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Abstract

This experiment investigates the performance of an adaptive technique for the

classification of the following types of digitally modulated signals: binary amplitude shift

keying (BASK), binary phase shift keying (BPSK), quaternary phase shift keying (QPSK),

and binary frequency shift keying (BFSK).

The feature extraction process uses the mean and variance of the signal, and

magnitudes and locations of the maxima in the spectrum of the signal, the spectrum of the

signal squared, and the spectrum of the signal raised to the fourth power. The process of

raising the signal to the second and fourth power and searching for narrowband energy near

twice and four times the intermediate frequency is shown to provide useful information for

the classification of BPSK and QPSK signals.

A computer simulation is performed to measure the properties of the classifier.

First, the classifier is trained with a set of feature vectors calculated from 20 dB SNR

signals. The Least Mean Squares (LMS) algorithm is the adaptive procedure used to

generate the weight vectors used to form the linear decision functions. After training, these

weight vectors are used to classify unknown signals from the signal set. One signal from

each class at 20, 15, 10, and 5 dB SNRs are presented to the classifier. This method

correctly identifies all the signals considered during this experiment. However, the

conclusiveness of the results are limited due to the small number of trials performed. The

most important result is the discovery of features useful for the identification of M-ary PSK

signals. Further study is recommended in this area.
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AUTOMATIC CLASSIFICATION OF
DIGITALLY MODULATED SIGNALS

I. Introduction

Background

Consistent identification of the modulation type of an unknown signals is not possible

by human operators (Liedtke,1984:311). Applications such as radio spectrum surveillance

and electronic warfare require automatic identification of the modulation type of the received

signal (Chan and others,1985:22.5.1; Jondral,1985:177). The first application requires

information on modulation type in order to demodulate the signal. The second application

uses the information on modulation type in order to choose the appropriate electronic warfare

strategy.

Problem and Scpe

The purpose of the automatic signal classification method is to determine the

modulation type of unknown signals. The set of signals to be considered for identification of

modulation type are limited to forms of digital modulation. Specifically, the signals are

binary amplitude shift keying (BASK), binary phase shift keying (BPSK), quaternary phase

shift keying (QPSK), and binary frequency shift keying (BFSK).

The performance of the automatic classification procedure will be investigated by

simulations with computer generated signals and noise. This procedure does not attempt to

demodulate the unknown signals and is limited to a proof of concept of the classification

method.
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Sunnina -Qf Current Knowledgr,

A review of unclassified literature from 1982 to 1987 reveals three references

concerning the identification of the modulation type of signals. Two of the papers present

similar approaches to the identification problem. The earlier of the two papers, which was

written by Liedtke, provides the framework for a later paper by Jondral which is an

extension of Liedtike's work. Liedtke's paper does not present a theoretical development of

the statistics involved with the decision functions. However, Jondral uses an adaptive

procedure which is trained by a learning process and is shown to be a form of classifier

which minimizes the mean squared error. A third paper by Chan and others presents an

approach for the identification of the modulation type of signals based upon the statistical

properties of their envelopes. The three papers are summarized below.

Summary -f Liedtke's Paper. The paper by Liedtke describes a method for the

automatic classification of digitally modulated signals. First the signals are received by a

conventional receiver and then digitized. A concentric finite impulse response (FIR)

filterbank is used to band limit the digitized signal to N different bandwidths about the

intermediate frequency of the receiver. The concentric FIR filterbank has N parallel outputs

corresponding to the N different bandwidths.

The next stage of the processing is demodulation by what Liedtke calls a universal

demodulator. "The name 'universal demodulator' indicates that all the modulation types of

interest can be demodulated without specifically adjusting the demodulator parameters"

(Liedtke, 1984:3 13). The universal demodulator is realized by using many demodulators; or

by using only one demodulator in a time division multiplexed manner. The next step of the

classification method is to calculate parameters of the unknown signal.

Feature extraction is the process of calculating attributes from input data (Tou and

Gonzalez, 1974:12). The features calculated by Liedtke are the amplitude, instantaneous

frequency, and phase. The variances of the amplitude and instantaneous frequency data are

calculated and histograms of the amplitude, instantaneous frequency and phase information

1-2



are also computed.

The histograms are processed further by weighting functions. There is a specific

weighting function for each modulation type of interest. Each weighting function has the

property of producing a numerical result which is large when applied to the histogram from

the type of modulation for which the weighting function is designed; the result is small when

applied to histograms derived from other types of modulation. The next step in the

classification method is to decide what type of modulation was used on the signal based upon

the features which have been calculated.

Decision functions operate upon the processed features to decide which type of signal

the features describe. The decision functions of Liedtke are based upon Boolean type

equations. For example, if all of the following conditions are satisfied for the input data,

BFSK is chosen as the type of modulation used on the input signal: the result of processing

the frequency histogram of the data with the weighting function corresponding to BFSK is

Ce greater than the threshold for the processed frequency histogram; the variance of the

instantaneous frequency is greater than its threshold; the variance of the amplitude is less

than its threshold.

Liedtke uses the notation of Boolean algebra to simplify the expression of his decision

functions. In his notation, the preceeding decision function is represented in equation (1-1)

as

[FI > TFHI] .AND. [FVAR > TFVAR] .AND. [AVAR < TAVAR] = TRUE (1-1)

where

FH = result of processing frequency histogram with the
weighting function for BFSK

TFHI = threshold on processing frequency histogram with the

weighting function for BFSK

FVAR = variance of the instantaneous frequency

TFVAR = threshold on the variance of the instantaneous frequency

1-3
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AVAR = variance of the amplitude

TAVAR = threshold on the variance of the amplitude

Similar decision functions are given for the other modulation types of interest. Liedtke

achieves good performance for the identification of the following types of modulation:

BASK, BFSK, BPSK, QPSK, quaternary FSK and 8-PSK.

Summary of Jondral's Papgr The paper by Jondral describes a signal classification

method very similar to that of Liedtke. The preprocessing of the signals are identical in both

papers. The difference between the papers is that Jondral uses an adaptive process to

develop his decision functions which are optimum in a mean squared error sense

(Jondral,1985:184). Liedtke formulates his decision functions intuitively as boolean

equations (Liedtke,1983). Jondral achieves good performance from his classification

method for the following types of modulation: BASK, BFSK, BPSK2, quaternary FSK,

amplitude modulation with large carrier (AM-LC) and single sideband amplitude modulation

with suppressed carrier (SSB-SC).

Summary f Pap The paper by Chan and others describes a method to

determine the modulation type of a signal based upon the characteristics of its envelope.

Note that this is just one of the features used by Liedtke and Jondral. However, the work of

Chan and others show that the ratio of the variance of the envelope to the square of its mean

can be used as a feature to reliably separate different types of modulation (Chan and

others,1985). This ratio is derived as a function of carrier to noise ratio for the signals of

interest and thresholds are calculated for the determination of modulation type. This scheme

was shown to be effective for the separation of AM-LC, double sideband suppressed carrier

AM, SSB, and FM. However, this method is unable to separate between classes of signals

with constant envelopes. That is, it can not distinguish between classes of angle modulated

signals since this type of modulation produces waveforms with constant envelopes (Chan

and others,1985).

1-4
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Assumptions

Several assumptions are made concerning the signals and the environment observed by

the classification procedure presented in this thesis. The received signal is assumed to be

corrupted by additive white gaussian noise. The signal which is to be processed is assumed

to be at the output of the IF amplifier of a receiver. The IF is taken to be 100 kHz. It is also

assumed that only the unknown signal plus noise is present within the passband of the IF

amplifier. The message signal is assumed to have independent and equally likely symbols.

The assumptions mentioned above result in a mathematically tractable thesis problem

which is readily implemented on a computer while simulating some of the conditions

encountered in typical conditions.

Standards

The performance of the procedure developed in this thesis will be judged as

successful or unsuccessful based upon the results of the simulation. Comparisons with the

efforts of the work presented in the summary of current knowledge are inconclusive due to

the limited number of samples classified by the developed method. However, results will be

tabulated for the performance of the developed procedure versus signal to noise ratio and

modulation type.

Aptach

The approach to the signal classification problem is to simulate the signals and

classification procedure in software. This method allows the precise control of the operating

environment, signal and classifier parameters may be easily changed, and no specialized

equipment is required.

The software is in Fortran and was written solely by the author with the exception of a

fast Fourier transform routine, which is due to Ahmed and Natarajan (Ahmed and

Natarajan,1983:160-161).

1-5
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Comparison to Existing Methods. The approach to the classification problem will be a

combination of the procedures of Liedtke, Chan and others, and Jondral. The method

described in this thesis uses the mean and the variance of the signal envelope as two features.

The decision functions used are developed from an adaptive algorithm. This is essentialy the

same approach to the development of decision functions used by Jondral. The preprocessing

for feature extraction is different from all of the above authors.

The methods of Liedtke and Jondral use phase histograms to determine the level of

phase modulation of PSK signals, while the procedure due to Chan and others can not

distinguish between classes of angle modulated signals. The automatic classifier described in

this paper uses new methods to determine the level of modulation for PSK signals.

The original contributions of this effort are the application of new techniques for the

separation of different levels of PSK signals. The separation of different levels of PSK

refers to the determination of whether a phase shift keyed signal is BPSK or QPSK.

. General Structure of Classification Procedur. The classification procedure consists of

three steps. The first step is to calculate features from signals which are of known

modulation type. The features are used as elements in a feature vector which are used as

inputs to the next step. In the second step, these feature vectors are used as training vectors

in an adaptive algorithm which produces weight vectors for each class of signals. After

training, the third step is performed. Here, classification of unknown signals is performed

by multiplying the weight vectors by the feature vector obtained from the unknown signal.

The results of these multiplications are decision functions. These decision functions are such

that the largest output occurs when a signal from the class for which it has been optimized is

applied.

Feature Extraction. The features used in the classification method are derived from the

envelope of the signal and from the spectra of the signal, the signal squared and the signal

quadrupled.

The mean and variance of the envelope are calculated and used as elements of the

1-6
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feature vector. These features are intended to provide information necessary to classify

amplitude shift keyed signals.

The magnitude of the Fourier transform of the signal is searched for energy of the

chosen bandwidth using a correlation process which is described in the Theory chapter. The

features obtained from this correlation are the magnitude and spectral location of two largest

peaks of the correlation waveform. These elements of the feature vector are intended to

provide infomation related to frequency shift keyed signals.

The magnitude of the Fourier transforms of the signal squared and the signal

quadrupled are searched for narrowband energy near twice and four times the frequency

obtained from the correlation of the spectrum of the original signal. The modulation from an

M-ary PSK signal is removed when it is multiplied by itself M times (Proakis,1983:197).

The result of this operation is an unmodulated sinusoid at M times the original carrier

frequency.

ITheoretically, the bandwidth of a sinusoid approaches zero as the observation time

becomes infinite (Stremler,1982:87). In practice, the bandwith will be small, but zero

bandwidth will not occur due to finite observation time and other effects. However, when a

signal other than M-ary PSK is multiplied by itself M times, its bandwidth will be increased

by a factor of M (Gagliardi,1978:63). The property of M-ary PSK signals producing a

sinusoid when raised to the Mth power is exploited in this classification procedure. Since this

property is unique to PSK signals, it is expected to be a useful feature for the separation of

BPSK and QPSK from each other and other classes of signals.

Development of Decision Functions. The decision functions used in this experiment

are generated by an adaptive technique known as the Least Mean Squares (LMS) algorithm

(Widrow and Stearns,1985: Ch 6). It accepts feature vectors from known classes of signals.

Based upon these inputs, the weights in an adaptive linear combiner, as shown in Figure

1-1, change so as to produce the largest value when the input signal is from the class to

which the weights are matched.

1-7



The structure of the classifier of this paper uses an adaptive linear combiner for each

class of signal. The class decision for an unknown feature vector is made by choosing the

largest output from the set of adaptive linear combiners. The structure of the classifier is

shown in Figure 1-2.

Input
Feature X W
Veotor Y

O tpu

Figure 1-1. Adaptive Linear Combiner (Widrow and Stearns,1985:16)

Summary

This chapter has provided an overview of existing methods for the classification of the

modulation type of signals. A brief presentation of the proposed method was also given.

The existing methods are explored in greater depth in the next chapter and the proposed

method is explained in the Theory chapter.

1-8
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Featre AC 2Choose
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Figure 1-2. Structure of the Classifier
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II. Literature Review

Background

The problem of identification of modulation type for digitally modulated signals is of

interest in spectrum surveillance and electronic warfare applications. Communications

jamming is one important aspect of electronic warfare. In the electronic warfare case,

knowledge of the type of modulation used by an enemy emitter would allow an appropriate

choice of a jamming signal (Golden,1983:12).

As stated in the first chapter, a review of the unclassified literature of the past five

years resulted in the discovery of three papers concerned with the identification of the

modulation type of unknown signals. The first paper to be considered is due to Liedtke

(Liedtke,1984). The second paper examined is due to Jondral (Jondral,1985). Finally, the

third paper is due to Chan and others (Chan and others,1985).

C Liedtke's Classification Algorithm,

The earliest paper found was written by Liedtke in 1984. A computer simulation for

the classification of signals according to modulation is described. The classes of signals

considered for separation by the classifier are BASK, BPSK, QPSK4, 8-PSK, and BFSK.

Informational Relationships. An important aspect of electronic warfare is the jamming

of communications signals. In this case, the jammer does not need to demodulate the

underlying data of the enemy's signals. However, knowledge of the modulation type would

assist the jammer in choosing a strategy (Golden, 1983:12). The relationships between the

amount of information required for signal detection, classification, and demodulation are

considered below.

Figure 2-1 shows the amount of information gained after processingversus the

amount of information required to perform the processing (Liedtke, 1984:312). The figure

shows that less a priori information is required for energy detection than for demodulation.

2-1



W Nrma Demodulation

0 Sigal Classification

0~ Enegyecion

Necessary Information Before Processing

Figure 2-1. Informational Relationships (Liedtke,1984: 312)

However, the amount of information gained after demodulation is greater than that of energy

detection. The informational relationships for signal classification are between the cases of

demodulation and energy detection.

Energy detection requires the least amount of a priori information of the three

processes considered in the figure. The center frequency of the unknown signal must be

known only within a range determined by the bandwidth of the energy detector. However,

energy detection provides only information related to the existence of radio frequency

energy. Demodulation requires the largest amount of a priori information of the three

processes shown in Figure 2-1. This information consists of modulation type, center

frequency, bandwidth, symbol rate, and perhaps other parameters (Liedtke, 1984:312).

Correspondingly, demodulation recovers the most information from the signal of the three

processes.

Classification requires less a priori information than needed for demodulation and

more than needed for energy detection; the amount of information gained by classification is

between the amounts fr-om demodulation and energy detection. The structure of the

classifier developed by Liedtke is discussed below.
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Architecture of the Classifier. Figure 2-2 is a block diagram of the architecture of the

classification system. The unknown signal enters the system through the antenna and

receiver. The receiver is used only to translate a portion of the RF spectrum to the center

frequency of components used later in the processing. However, this classification method

requires an approximate value for the carrier frequency of the unknown signal. No

demodulation occurs in the receiver.

Receiver

Come 74ri FeatureFI c R Un ivers1 Feature AnalysisFilterbai~k Demodulator Extraction aClesification

Figure 2-2. Architecture of Liedtke's Classification System (Liedtke, 1984:313)

The output of the receiver is digitized and then filtered by a bank of FIR filters. The

bank of FIR filters consists of a number of bandpass filters with the same center frequency

but different bandwidths. The signal of interest is operated upon by all of the filters and then

the filter outputs are processed individually. According to Liedtke, the best classification

results are obtained from the output of the filter with the bandwidth that best matches the

bandwidth of the unknown signal. This filter bandwidth also provides a measure of the

keying rate of the signal. The outputs of the FIR filterbank are then input to a universal

demodulator.
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The universal demodulator of Liedtke is a demodulator which can demodulate all of the

signals of interest without the adjustment of parameters. A bank of demodulators is

suggested as a practical method of achieving the universal demodulator. Alternatively, one

demodulator could be operated in a time division multiplexed mode under some form of

automatic control (Liedtke,1984:313). Note that the signal has been digitized; therefore,

demodulation is an algorithm implemented on a computer or special purpose digital

hardware. The universal demodulator provides inputs to the feature extraction algorithms.

Featue Extraction, The feature extraction processing calculates parameters of the

unknown signal that will assist in the classification of its modulation type. The features

chosen by Liedtke are the amplitude, phase, and instantaneous frequency. The methods used

to obtain these parameters are shown in Figure 2-3. The feature extraction process operates

upon the digitized signal. Liedtke determines a sufficient sample rate by experiment. When

the sample rate was eight times the bandwidth of the filter in the FIR filterbank, good

classification results were obtained. The bandwidth of this filter is approximately equal to

twice the reciprocal of the keying rate. Therefore, Liedtke was operating upon signals that

were digitized at a rate which provided sixteen samples per symbol.

The feature extraction algorithm requires that the input signal be quadrature sampled.

This is represented in Figure 2-3 by the real and imaginary inputs. The real and imaginary

channels are also referred to as the inphase and quadrature components. The features that are

calculated are functions of the inphase and quadrature components. The amplitude, phase,

Figure 2-3. Feature Extraction Algorithms (Liedtke,1984:3 14)
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and instantaneous frequency are calculated in a straightforward manner. Detailed

explanations of these operations can be found in the references(Couch,1983;Schwartz, 1980;

Stremler,1982). Since the features are calculated at every sample instant, a method must be

used to find the proper time to collect the ouptuts of the feature extraction.

Synchronization, The sampling instants for each feature are also calculated. This is

not the same as the clock used for digitization. These sample times are used to determine

when to extract the amplitude, phase, and frequency values from the feature extraction

algorithm.

The correct times to collect the outputs of the feature extraction circuit are calculated by

the upper signal path of Figure 2-3. Notice that outputs a, fl, and A0 are extracted based

upon the maximum detector and that the output f2 is extracted based upon the minimum

detector. Working backwards along the signal path, it is seen that the inputs to the maximum

and minimum detectors are the same signal. This signal i3 the square root of the sum of the

squares of high pass filtered inphase and quadrature components. The purpose of the high

pass filters is to remove the effects of modulation on the carrier.

That the amplitude and phase of the unknown signal should be measured at a

maximum of the signal envelope is apparent. Also note that f, is extracted at a maximum.

The phase differencing algorithm for the output f2 is sampled at times determined by

minima of the signal envelope.

Feature Processing. The features extracted by the previous step are used to generate

histograms of the amplitude, frequency, and phase. This section describes the use of these

histograms as related to the separation of BPSK, QPSK, 8-PSK, BFSK, and BASK.

The histograms generated from the phase values contain the phase difference between

two sampled points as given by A(kt) = 0(kt) - 0(kt - T) and the result is called the

difference phase histogram. This was done because Liedtke has difficulty obtaining a correct

reference phase (Liedtke, 1984:315). The difference phase histograms of BPSK, and QPSK
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are shown in Figure 2-4.

BPSK QPSK

:.* ...... ° ....

.. .. .. .. .. .. ....- :.... ... ...

.. . ... ..... ............ ....• .. . .. . -- I ., •

-180 -90 0 90 180 -180 -90 0 90 180
.d lDegree]- -- w [Degree] -

Figure 2-4. Difference Phase Histograms (Liedtke, 1984:315)

The values have been modified such that all A0 values are between ±180 degrees.

The histogram of BPSK has peaks at 0 and ±180 degrees. The three peaks of the histogram

actually depict two phase states since a positive phase shift of 180 degrees is equivalent to a

negative phase shift ofi 80 degrees. Similarly, the histogram of QPSK has five peaks

corresponding to the four phase states of this signal. The histogram for white gaussian noise

does not have a structured appearance. These histograms are processed in such a way as to

allow the separation of BPSK, QPSK, and PSK8.

The difference phase histograms are considered as waveforms to be processed. The

object is to use the histograms as inputs to a procedure that produces a maximal output when

the histograms are matched with the signal of interest. This structure can be viewed as a set

of matched filters for an M-ary signaling set. Figure 2-5 shows a bank of matched filters

used for optimum detection of M-ary signals. In the histogram separation problem, each

histogram is considered as one signal of the M-ary signaling set. However, this
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g~ implementation could not be used by Liedtke because the impulse response of the matched

filters are not possible to calculate (Liedtke, 1984:316). This is shown by consideration of a

two class problem corresponding to only two possible classes of unknown signals.

IF Y1

0 r

Figure 2-5. Matched Filter Processing for M-ary Signals
(Cooper and McGillem, 1986:221)

The likelihood ratio test involved in making a two class decision is given

by Liedtke as (Liedtke, 1984:3 16)

f(xO X, -,.- ,xMlI1Cl)

INx, X1 ,. . . ____________ > TL (2-1)

f(X0, X II... ,XM4I IGCO)

where

f(xf'xl,... ,xM-. 11Ci) = conditional probability density function of histogram
values given class i; i = 0, 1

xi = histogram values
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M = number of cells in the histograms
TL = threshold chosen to optimize some condition

The problems associated with the computation of the conditional probabilty density

functions are twofold; they are a function of the symbol energy to white noise energy

density ratio and are also dependent upon the maximum value of the phase difference

histogram which is a function of the message (Liedtke,1984:317).

These problems are overcome by the use of suboptimal weighting functions that

produce maximal values when applied to the histogram for which they are matched.

Weighting functions are developed for the signals considered in this paper. The weighting

functions for BASK, BPSK, and QPSK are shown in Figure 2-6.

-J0 -9 0 8

WI &

1 ............. Ai(.... e

-90 0 90 180

~Figure 2-6. Weighting Functions for BASK, BPSK and QPSK (Liedtke, 1984:316)

i These weighting functions do not suffer from the same problems as the optimal

weighting functions. Each weighting function has the property of producing a maximal

Svalue when it oeasupnthe phase difference histogram for which it is designed.
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An example of feature processing for one class of signals is considered. Assuming

PSK modulation was used on the unknown signal, the level of modulation is determined by

operating upon the phase difference histogram by each weighting function and choosing the

level of phase modulation corresponding to the weighting function which lead to the largest

output. If two identical values are obtained from this process, the lower level of phase

modulation should be chosen since a BPSK signal will have a phase difference histogram

that will produce a large result when operated upon by the QPSK and 8-PSK weighting

functions.

Actual signal classification is done by considering a series of two class problems.

The first test separates BPSK, QPSK, and 8-PSK from noise by the approach described

above. The result of this test also determines the level of phase modulation.

The second test is used in the separation of BPSK from BASK and BFSK. The

variances of the amplitude and frequency (from maximum detector) values are calculated.

Liedtke states that" a large amplitude variance value is indicative of BASK, and a large

frequency variance is indicative of BFSK." BPSK would have small values for both

amplitude and frequency variance.

A third test is used to separate BASK and BFSK from noise. It is similar to the test

for separating PSK from noise. The amplitude histogram of BASK contains two peaks as

does the frequency histogram of BFSK. These histograms will contain only one peak for

other types of modulation (Liedtke,1984:317).

A review of the classification procedure reveals the five features used in the automatic

classification method. These features are the difference phase histogram, the amplitude

histogram, the frequency histogram (with the frequency values determined at a minimum

sampling instant), the amplitude variance, and the frequency variance (with the frequency

values determined at a maximum sampling instant).

Decision Functions. The five separation parameters defined above are used in decision

functions to perform the classification of unknown signals. Liedtke uses Boolean type
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equations to specify decision functions. The decision function for PSK with i phase states is

by Liedtke as (Liedtke,1984:318)

[(naax ( DPH))i,I >TDPHI]. [AVAR < TLAVAR] • [FVAR < TFVAR] = TRUE

wi  (2-2)

where

(max (DPHI)) = selecting the largest value resulting from the processing
Swi  the difference phase histogram with the weighting functions

wl , w2 , w4 , and w8

DPFI = result of processing a phase difference histogram with a

weighting function

TDPHI = threshold of the phase difference histogram

AVAR = amplitude variance

TLAVAR = lower threshold of amplitude variance

FVAR = frequency variance

TFVAR = threshold of frequency variance

The dots between the square brackets symbolize the logical "AND" operation. Each

expression in brackets is evaluated as a logical binary decision. Then each bracketed term is

logically AND'ed and the result is compared to the right hand side of the expression. This

expression is interpreted as: choose PSK with i phase states if the result of processing the

difference phase histogram with weighting function i is greater than any other weighting

function j (i * j) and the amplitude variance is less than a lower threshold of the amplitude

variance, and if the frequency variance is less than a threshold of the frequency variance.

Liedtke's decision functions for BASK and BFSK are given in equations (2-3) and

(2-4) as

[AHI > TAHI] • [AVAR >TUAVAR] = TRUE (2-3)
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[FI > TFHI] [FVAR > TFVAR] [AVAR <TLAVAR) = TRUE (2-4)

where

AHI = resiilt of processing amplitude histogram with w1

TAHI = threshold for AHI

TUAVAR = upper threshold of amplitude variance

FM1 = result of processing frequency histogram with w2

TFHI = threshold for FMI

A conceptualized decision space is shown in Figure 2-7. The dotted lines represent

thresholds. Threshold values were chosen more than three standard deviations away from

the mean values of the separation parameters. The arrows indicate the directions of

increasing feature values. The results of the simulation are presented in the next section.

NIoise and
FSX 2 FHI modulated AH! ASK?2

I signals

IWSK 1
__-OPHI J -

PSK 2 AVAR
F V AR (PSK4. PSK 6)

Figure 2-7. Conceptualized Decision Space (Liedtke, 1984:318)
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Results, The ability of the classification method to discriminate against noise was

tested by running 100 simulations with white gaussian noise as the only input. The classifier

never misidentified noise as a type of digital modulation. Figure 2-8 presents the results of

the classifier on the signals of interest. The probability of a correct decision by the classifier

is represented by the symbol Pd. The values of Pd where estimated by running a 256

symbol length message through the simulation 25 times for each ET/no value plotted.

P. 10" 1 ' l e1 P. 10' 10' 10.'100 t r I ,,10

M)] ASK 2 %] PSK 2I

II II I
I I I

055 10
E/n o [dB]--- 

Et/ns 1dB]-

10-1 10-1 10,4  10"  10"  0

FSK 2 PSK 4,

010 5 10 15

Figure 2-8. Results of Classification (Liedtke, 1984:319)

This method was also shown to perform well under conditions of practical interest; the

clasifier was tested for its ability to separate signals when the center frequency of the

unknown signal was mistuned, the symbol rate was not estimated properly, and the signal

was located between two frequency channels of similar signal strength and modulation type.

Summa. This classification algorithm has been shown to perform well at signal to

noise ratios that are likely to be encounterd in practical situations. Liedtke presents graphs of

the probability of correct classificaton versus ET/no.
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Jondral's Classification Algorithm.

The second paper of the literature review was written by Jondral in 1985

(Jondral, 1985). The structure of the classification algorithm used by Jondral is shown in

Figure 2-9. The experiment considers the following seven types of signals: BASK,

BFSK, QFSK, BPSK, AM, SSB-SC, and noise. Jondral refers to AM, and SSB-SC as A3

and A3J.

j Classification

~Feature

MF -Sinl Preprocessing Extraction "

.- 4 Adaptation 1

Figure 2-9. Structure of Jondral's Classifier (Jondral,1985:178)

The preprocessing stage is functionally identical to the preprocessing of Liedtke.

Another similarity to the classifier of Liedtke is that the features used in this classifier are

derived from normalized histograms of the amplitude, phase, and frequency of the signal

(Jondral. 1985:182).

The similarities with Liedtke's paper end with the classification procedure. Although

the features generated by Jondral are histograms, the values from each histogram are then

concatenated with each other to form a vector of 192 elements. Feature vectors for the
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signals of interest to Jondral are shown in Figure 2- 10. The classification of unknown

signals is based upon the ability of decision functions to distinguish between these feature

vectors.

Classification, Jondral uses a two step classification process. The first step of the

classification procedure uses signals from known classes. Feature vectors are calculated

from these signals. These feature vectors are then used to train an adaptive classifier. The

adaptation of the classifier results in coefficient vectors. The result of multiplying weight

vectors with feature vectors are known as decision functions. T7he decision functions are

shown to be weighted sums of the elements of the feature vectors (Jondral,1985: 184). The

adaptation process results in weight vectors which minimize the mean squared error between

the desired and actual outputs (Jondral, 1985: 184).

.. . . . . .

- L

Figure 2-10. Feature Vectors of Jnrl(oda,951
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The second step in the classification process is to use the coefficient vectors together as

a matrix to multiply with feature vectors from unknown signals. The result of this

multiplication is a column vector. The elements of this column vector correspond to classes

of signals. For example, if the third element in the resultant column vector is the largest of

all the elements, the classifier of Jondral decides that the unknown signal belongs to class 3

(Jondral, 1985:184).

Experimental Results. The unknown signals used in this experiment were not

simulated in software. Radio signals were recorded on magnetic tape under the supervision

of a listener who classified the type of modulation used on each signal. The classification

given by the listener is taken to be the actual modulation used on the signal. Therefore, the

result of the automatic classifier is considered correct when it is same conclusion as the

human classifier (Jondral,1985:186).

The adaptation of the classifier was done on a set of learning samples. Classification

was then performed on other samples to determine how well the classifier performed. The

number of learning samples during the adaptation for each signal of interest is shown in

Table 2-1. After learning was completed, the classifier was used on the test signals. The

results are presented in Table 2-2.

Summary. Jondral's approach to signal classification uses essentially the same

features as Liedtke. However, Jondral uses an adaptive process to form weight vectors for

use in the pattern recognition algorithm. However, the results of the two papers can not be

directly compared because Jondral does not include performance as a function of signal to

noise ratio. Signal to noise ratios of the signals used in the classification procedure are not

known. However, all SNR's were sufficient to allow a human to perform visual or aural

classification. Without knowledge of the SNR's, quantitative performance comparisons

between this classification technique and others can not be made.
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Chan's Classification Algorithm,

The third paper of the literature review was written by Chan, Gadbois, and Yansouni in1985

(Chan and others,1985). A method is presented for the identification of the modulation type of an

unknown signal based upon the statistics of its envelope. The ratio of the variance of the envelope to

the square of its mean is used as the only feature in this signal classification scheme.

Background. The feature used for separation, the ratio of the variance of the signal envelope to

the square of the mean of the signal envelope, is known as R. The use of R for modulation

identification can be understood at an intuitive level by considering a frequency modulated signal. In

Table 2-1. Number of Learning and Test Samples for each Signal

Signal Class Learning Samples Test Samples

BASK 772 257

BFSK 1256 418

QFSK 1109 370

BPSK 1500 500

AM-LC 1500 500

AM-SSB-SC 916 306

Noise 1500 500

Sum 8553 2851

(Jondral, 1985:187)
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Table 2-2 Classification Results after Learning

BASK BFSK QFSK BPSK A3 A3J Noise

BASK 91.8 1.2 0.0 1.9 0.4 3.1 1.6

BFSK 0.0 95.2 0.2 1.2 0.0 1.0 2.4

QFSK 0.0 4.3 88.1 0.0 0.0 3.3 4.3

BPSK 0.0 0.0 0.0 95.8 1.8 0.0 2.4

A3 0.0 0.2 0.0 2.4 95.4 0.0 2.0

A3J 3.3 0.3 1.0 0.3 0.3 83.3 11.5

Noise 0.0 0.2 0.0 0.0 0.0 4.0 95.8

(Jondral,1985:188)

frequency modulation, the information is contained in the instantaneous frequency of the

signal: an FM signal has a constant envelope (Stremler,1982: 279). The variance of its

envelope is zero and therefore, R is equal to zero. For amplitude modulation, the

information is conveyed by the envelope. Chan and others show that R approaches unity for

AM.

Through the use of similar intuitive arguments, this method can be shown to be unable

to separate constant envelope signals such as FM, FSK, and PSK. However, the following

types of amplitude modulation, SSB, DSB-SC, and DSB-LC, have been shown to "have

very distinctive" R values (Chan and others).

Architecture of Chan's Classifier. A conceptual diagram of the modulation

identification method is shown in Figure 2-11. Assuming a quadrature sampled signalas in

the methods of Liedtke and Jondral, the envelope is calculated. The feature processing then

consists of calculating the variance and mean squared value of the envelope. The ratio of the
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variance to the square of the mean is then calculated. The decision function is a thresholding

operation which classifies signals based upon the value of the ratio calculated previously.

Recever A/D + eanDecision

I~eciv'r A/DFunction

2Variance Clss
IDecision

- -Figure 2-11. Architecture of Chan's Classifier

Decision Functions. Chan and others calculate theoretical values of R for the

modulation types listed in the Background section. These theoretical values are compared to

experimentally obtained values from 200 trials at two carrier to noise ratios and are displayed

in Table 2-3. The experimental and theoretical values are within close agreement. The

decision rules are based upon the theoretically obtained values for R are shown in Table 2-4.

The experimental data was generated with a gaussian message, gaussian noise, and

2048 points of bandpass signal centered at 40 kHz and sampled at 160 kHz. Table V shows

the results of this classification for 200 trials of the experiment at a carrier to noise ratio of

7dB.

Summary. This c-assification procedure has been shown to operate well at a carrier to

noise ratio of 7dB. This is below the threshold for FM communication (Gagliardi,1978:

159). However, Table 2-5 shows that during 200 simulations FM was never mistaken for a
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different type of modulation. This reliable separation of constant envelope signals from

varying envelope signals at the expense of not being able to distinguish between the classes

of constant envelope signals.

Table 2-3. Experimental and Theoretical Values of R

Type CNR Rexp Rthe Rexp Rthe

FM 7.0 0.31 0.31 0.019 0.012

10.4 0.16 0.16 0.0099 0.0057

AM 7.0 0.79 0.79 0.073 0.040

10.4 0.76 0.76 0.076 0.038

SSB 7.0 1.00 1.00 0.080 0.054

10.4 1.00 1.00 0.097 0.054

DSB 7.0 1.31 1.31 0.14 0.077

10.4 1.54 1.54 0.20 0.097

(Chan and others,1985:22.5.4)

Table 2-4. Decision Rule

R Decision

0.396_ R FM

.897 > R > .396 AM

1.105 > R> .897 SSB

R> 1.105 DSB

(Chan and others,1985:22.5. 4 )

- - Assuming that the AM signal could be modulated by an antipodal ± 1 bit stream, this

technique can be compared quantitatively to Liedtke's technique. The above signal is

2-19aa

N - 4~* M



identical in form to a BPSK signal. Liedtke obtains a probability of detection of unity for

BPSK at a CNR of 7 dB while Chan and others have a probability of detection of 0.91 at a

CNR of 7dB (Liedtke,1984: 319; Chan and others,1985:841).

Table 2-5. Classification Results

FM AM SSB DSB

FM 200 0 0 0

AM 0 181 19 0

SSB 0 15 160 25

DSB 0 0 12 188

(Chan and others,1985:22.5.4)

The complexity of Liedtke's procedure provides better performance than the simpler

method of Chan and others. However, less processing is required for the latter method. The

theory supporting the classification procedure of this paper is presented in the next chapter.
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I. Theory.,1

Introduction.

This chapter presents the theory used in the development and implementation of the

signal classification procedure. The classifier developed here contains some of the elements

from the three papers of the literature review and some new features which will be discussed

in later sections.

The architecture of the classifier is shown below in Figure 3-1.

Mernbership
Decision N

Receiver H, /D Extraction

IF Output Training

SAdaption

Figure 3-1. Architecture of the Classifier

The objective of the classifier is to determine the modulation type of the unknown

signal. The classification procedure is based upon building vectors whose elements are

features calculated from the signal. These vectors are considered as patterns and are input to

a set of linear decision functions generated by an adaptive algorithm. The feature extraction

and pattern classification procedures are now described.
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Descriinon Qf eaturs.

The features used in the classification of the modulation types for digitally modulated

signals are presented in this section. The first two features are derived from the envelope of

the signal and the following features are obtained from spectra related to the signal.

Features from h Sjinal Envelope. The mean and variance of the envelope of the

signal are calculated and are used as two elements of the feature vector. The remaining

features are derived from the spectrum of the signal and spectra of waveforms related to the

signal.

Features from th i gnal Spectra. A spectral correlation technique is used for the

extraction of the remaining features. The concept of spectral correlation is discussed below.

Spectral Correlation. Correlation is a mathematical technique which is used to

determine the similiarities between functions. This technique is routinely used with time

domain signals. The approach used in this thesis is to search the spectra of unknown signals

(for a common feature using correlation.

The spectral feature common to all digital modulation schemes considered in this paper

is that their energy is distributed in a sinc 2(x) manner about the carrier frequency. The sinc

function is defined by Couch as sinc(x) = sin(ntx)/tx) (Couch, 1983:20). Therefore, a

correlation of the spectra with a sinc2(x) function will result in a peak when the shift equals

the carrier frequency. However, the widths of the spectral lobes are functions of the symbol

rate of the modulation. This experiment simulates only signals with a symbol rate of 2500

symbols per second. Other symbol rates could be accomodated by reference functions of

different bandwidths.

Four elements of the feature vector are calculated as follows. First, the spectrum of

the unknown signal is correlated with a sinc2(x) function whose bandwidth is 5 kHz. This

corresponds to signals with a symbol rate of 2500 symbols per second. Then, the results of

this correlation is searched for the largest two values. The maginitude of the peaks and their

spectral locations are saved as features.
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Next, features are calculated from the spectrum of the signal squared. This spectrum

is correlated with a narrowband sinc2(x) function. The bandwidth of this sinc2(x) function

will be determined empirically. The resultant waveform is searched for a peak in the region

of twice the intermediate frequency. The magnitude and spectral location of the largest peak

constitutes two more elements of the feature vector. A sirniliar procedure is used to obtain

the next two elements of the feature vector.

The spectrum of the quadrupled signal is correlated with a narrowband sinc2(x)

function. The resultant waveform is searched for a peak near four times the intermediate

frequency. The largest peak of this correlation and its location are used as the following two

elements in the feature vector. Explanations for the extraction of the above features are given

in the next section.

CIO Physical Significance _Qf Elements in the eature Vr&tQE

This section presents an intuitive explanation of the significance of the elements used

to form the feature vector. First, the features derived from the envelope of the signal are

discussed.

Featurs from the, Signal Envelope. The mean and variance of the signal envelope are

the first two elements of the feature vector. The mean of the envelope is its average value

while its variance is a measure of the concentration of envelope values about the mean

(Ziemer and Tranter, 1976: 292). The envelope variance of constant envelope signals such as

MWary P5K and M-ary FSK is theoretically zero (Chan and others, 1985:22.5.2). The

variance must be other than zero if information is conveyed by the envelope, such as in any

form of AM.

In the previous chapter, Chan and others have shown for certain modulation types that

the ratio of the variance of the envelope to the square of its mean can be used to classify the

modulation type of certain unknown signals. The division of the variance by the square of
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the mean serves as a normalizing procedure. This normalization provides a relative measure

of changes in the envelope with respect to its average value.

Features from the Signal Spectra. Estimates of the carrier frequency, or frequencies

as in BFSK, are obtained from the spectrum of the signal. Features useful for identification

of BPSK and QPSK are obtained from the spectra of the signal squared and quadrupled.

When the spectrum of the signal is correlated with the sinc2(x) function a waveform is

produced. The two largest peaks and their locations from the resultant waveform provide the

next four elements of the feature vector. The purpose of these features are to provide

information related to the carrier frequency, or frequencies, of the unknown signal. The

estimate of the carrier frequency is used in the following step and as a feature to indicate

BFSK. An example is presented to illustrate these principles.

The theoretical power spectral density (PSD) of a BASK signal is shown in Figure

3-2. The width of the main lobe is twice the keying rate and the main lobe is centered about

l.0

0.5

Figure 3-2. Theoretical PSD of BASK (Couch,1983:35)

the carrier frequency (Schwartz, 1980: 215). This spectrum is treated as a waveform in the

following procedure. That is, a technique commonly used in the time domain will be used in

the frequency domain. The procedure is the same as in a time domain correlation. The only

difference is that the delay variable in the spectral correlation represents a frequency shift
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instead of a time shift.

An optimum method for locating the sinc2(x) shapes in the signal spectra

is desired. The processor that maximizes the peak signal to noise power ratio of a pulse in

gaussian noise is the matched filter (Cooper and McGillem, 1986: 88). In this case, the

signal shape is the sinc2(x) function in the spectra of the signal. The matched filtering is

accomplished using correlation which is equivalent to matched filtering under certain

conditions (Cooper and McGillem, 1986: 90). This equivalence is shown in Figure 3-3.

~t) +f .- S(,) + ,njgg

I J~t).

Figure 3-3. Equivalence of Matched Filter and Correlator
(Cooper and McGillem,1986:90)

Recall that the objective of this portion of the feature extraction is to determine the

center frequency of the unknown signal. Therefore, the spectrum of the signal, in this case

the BASK spectrum of Figure 3-2, is correlated with the reference function of the form

sinc 2 (x). The baseband sinc2 (x) is shown in Figure 3-4.

The maximum value of the correlation will occur when the reference function is shifted

such that it is aligned with the center frequency of the BASK signal. The amount of

frequency shift to the peak of the correlation provides an estimate of the carrier frequency.

The result of correlating the PSD of Figure 3-2 with the baseband sinc2(x) of Figure 3-4 is

shown in Figure 3-5.
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Figure 3-4. Baseband sinc2 (x) Function used for Correlation (Couch,1983:23)
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Figure 3-5. Result of Correlation of PSD of BASK with Baseband sinc2 (x)

The two largest values of the results of the correlation of the reference function with

the spectrum of the unknown signal are saved to provide information related to FSK

signaling. The PSD of BFSK signals is shown in Figure 3-6. The figure assumes

frequency spacing which relults in orthogonal symbol waveforms. The result of the

correlation of the sinc2(x) with BFSK will contain two peaks due to the two peaks of the
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Figure 3-6. Spectrum of a BFSK Signal (Couch, 1983:356)

spectrum. This is the purpose of retaining more than just one set of peak and location values

from the correlation.

Features from Spctra of Sig nl Raised to Powers. The preceeding steps have resulted

in features that assist in the detemination of carrier frequency or frequencies. The remaining

features to be calculated assist in the determination of the number of phase states for phase

shift keyed signals.

The following two features are based upon an idea related to carrier recovery for M-ary

PSK signals. A carrier recovery circuit for BPSK signals is shown in Figure 3-7.

The first step in the process is to raise the signal to the second power. This results in a

sinusoid at twice the carrier frequency of the input signal (Proakis, 1983:193). A bandpass

filter tuned to this frequency is used to separate other unwanted spectral components. Then a

frequency divider is used to provide a coherent reference signal at the carrier frequency

(Proakis,1983:193).

The property exploited in this feature extraction process is that BPSK signals squared

theoretically result in a sinusoid at twice the carrier frequency while others signals will have

approximately twice the bandwidth of the original signal (Gagliardi, 1978:63). Therefore, a
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Figure 3-7. Carrier Recovery Circuit for BPSK (Proakis, 1983:194)

narrow spectral peak at twice the carrier frequency is searched for using the spectral

__ correlation technique. The presence of narrowband energy at twice the carrier frequency is a

]1) feature indicative of BPSK signals.

A similiar approach is used for QPSK except that the input signal is raised to the fourth

power. Then, the correlation technique is used to search for narrowband energy at four

times the carrier frequency.

In the discussion concerning raising the signal to the second and fourth

powers, it has been assumed that there is sufficient signal power at the outputs of the

nonlinear devices to obtain useful features. Analyses of square law devices in the presence

of noise are presented in many texts (Cooper and McGillem, 1986:118; Ziemer and

Tranter,1976:270 ; Taub and Schilling,1986: 363). However, an analysis of the signal to

noise ratio relationships of a fourth law devices is not as easily found. Appendix A provides

such an analysis. The result is similiar to that of a square law device in that there is a

threshold effect at an input signal to noise ratio of about 10 dB. Therefore, useful output is

S expected when the input SNR is above 10 dB.
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This completes the discussion of the significance of the elements of the feature vector.

Each element has been shown to be related to some unique aspect of an unknown signal.

The remaining step in the process is the classification algorithm to operate upon the feature

vectors.

Description of Classification Algorithm

The method used for classification involves two stages. In the first stage, weight

vectors are generated from feature vectors calculated from signals with known class

membership. The LMS algorithm is used to adaptively calculate the four weight vectors

needed for the separation of the four classes of interest. The second stage, classification of

unknown signals, begins after the weight vectors are calculated. Feature vectors from

unknown signals are multiplied with the weight vectors. Class membership is determined by

selecting the class corresponding to the weight vector which produces the largest ouput.

The LMS algorithm can be derived from a simpler algorithm, the perceptron algorithm

(Lippmann,1987: 14). Therefore, the perceptron algorithm is described and then, the

conversion from the perceptron to the LMS algorithm is presented.

The perceptron algorithm is an adaptive procedure whereby the algorithm modifies

weight vectors to achieve optimum performance based upon the criterion of correctly

identifying all the feature vectors of the training set (Tou and Gonzalez, 1974:162).

The adaptation is also referred to as training of the classifier. The training requires

that known inputs be applied in order that the desired outputs are known. The training is

considered complete when the algorithm no longer changes the elements of the weight

vectors. The result of the perceptron algorithm are weight vectors which are used to form

linear combinations of the elements in the feature vectors. The perceptron algorithm is now

discussed in greater detail.

Perceptron Algorithm. Figure 3-8 shows a model of the perceptron classifier.

The S array represents the elements of the feature vector. The A array represents associative

units which perform a type of threshold logic.The perceptron algorithm uses a hard limiter as
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the function of the associative unit. Other possible functions for use in the associative units

are given by Lippmann and are shown in Figure 3-9. Different versions of the perceptron

are acheived by choosing different functions in the associative units. The LMS algorithm

may be obtained from the perceptron algorithm by a substitution of the threshold logic

function of Figure 3-9 for the hard limiter function (Lippmann, 1987:14).

S A R
Ara Array A~ra

1W

Figure 3-8. Basic Perceptron Structure (Tou and Gonzalez, 1974:160)
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Figure 3-9. Functions used in Associative Units (Lippmann,1987:5)

The optimization criterion for the LMS algorithm is the minimization of the mean squared

error between the actual and desired output. This is explained in greater detail in a later

section.

In Figure 3-8, the xn represent the elements of the x vector which is the feature vector

to be classified. The wn represent elements of the w vector which is a vector of weights

used to generate decision functions. The wn are the parameters which are updated during

the training of the algorithm and ultimately are responsible for class membership decisions..

Since it has only one output node the perceptron shown in this figure can be used only for a

two class problem (Tou and Gonzalez, 1974; 161). For the multiclass problem of this

thesis, this structure needs to be modified.

A muliticlass perceptron algorithm is described by Tou and Gonzalez and also by

Lippmann. The modification consists of adding output nodes to the structure of Figure 3-8.

There is an output node for each class of feature vectors to be identified (Tou and

Gonzalez, 1974:181).

The scenario for the multiclass perceptron is as follows. The M pattern classes are

assumed to be separable by M decision functions with the property that for an input vector x
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belonging to the class i (Tou and Gonzalez, 1974:181)

di(x) > dj(x) for all j * i (3-1)

The decision functions are defined by corresponding weights. The decision function

di(k) represents the decision function for class i at the kth iteration of the training and is given

as (Tou and Gonzalez,1974:182)

di[x(k)] = wiT(k)'xi(k) (3-2)

where x(k) and wi(k) are the input and weight vectors. An example of this procedure is

presented in the next section to illustrate the method by which the weights are updated by the

process to determine the decision functions.

Ice Example of Multiclass Perceptron Algorithm, This section demonstrates the use

of the multiclass perceptron algorithm. The following example is from Tou and Gonzalez

(Tou and Gonzalez, 1974:181-186).

There are M classes of patterns to be classified and are represented as C1,C 2 .

CM. During the training, an input pattern x(k) belonging to class Ci is presented at the kth

iteration and the M decision functions are evaluated. If

ditx(k)] > djtx(k)] j =1, 2,.....M ; j i (3-3)

then the weight vectors are not modified (Tou and Gonzalez,1974:18 1). This can be written

as (Tou and Gonzalez, 1974:181)

wj(k +1)=wj(k) j=1,2,... ,1M (3-4)
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This corresponds to the situation when the optimum weights have been found and therefore

the training of the classifier is completed. However, if for some decision function n (Tou

and Gonzalez, 1974:181)

di[x(k)] < dn[x(k)] (3-5)

then the weights of all the decision functions must be modified or adapted. Equations used

to update the vector of weights are given as (Tou and Gonzalez, 1974:182)

wi(k + 1) = wi(k) + pgx(k)

Wn(k + 1) = Wn(k) - J.x(k)

wj(k + 1) w(k) (3-6)

(P where t is a positive constant with a value between zero and one. This constant controls the

speed of convergence and also affects the stability of the adaptation process (Lippmann,

1987:13). These new weights are used during the next iteration of the training process. The

training is continued by applying training vectors and updating the weights until the

perceptron correctly classifies all the vectors of the training set.

Relationship betweeen the Perceptron and LMS Algorithms. This section

discusses the relationships between the perceptron and LMS algorithms and presents the

training method used with the LMS algorithm. Equations (3-5) and (3-6) are equivalent

to the hard limiter function in the associative unit shown in Figure 3-9. The weights are

updated by adding It" x(k) when there is a difference between the desired and actual

outputs. The weights are not updated when the actual output equals the desired output. In

this case, the magnitude of the difference does not affect the how the weights are updated.

As stated previously, the LMS algorithm is obtained from the perceptron algorithm by

using a linear function in the associative unit shown in Figure 3-9. The weight update

3-13

. tI !! . w w3
I I



V- NU I Xr KI. -V - -1

equation is now written as (Widrow and Stearns,1985:100)

wi(k+l) = wi(k) + 2g- e(k). x(k) (3-7)

where

e(k) = d(k) - wiT(k) "x(k)

The LMS algorithm updates the weights by an amount proportional to the error bteween the

desired and actual outputs.

The training of the LMS algorithm is not as straightforward as training the perceptron.

Recall, the perceptron iteratively operated upon the training set until it correctly classifies

each training vector. The LMS algorithm is run for M trials and for a certain number of

iterations. Then, the average of e2(k) over the M trials is observed as a function of the

iteration number, k. The weights are said to have converged when e2 (k) does not decrease

with increasing iteration number (Widrow and Stearns, 1985:105).

Although the LMS algorithm results from a small change to the perceptron algorithm,

it has an important advantage over the perceptron. Lippmann states that "the perceptron

convergence procedure ... may oscillate continuously when inputs are not separable and

distributions overlap." (Lippmann,1987:14). The LMS algorithm will converge in this case

and the result is the least mean squares solution (Lippmann,1987:14).

Application of LMS Algorithm, Figure 3-10 depicts the features extracted

earlier being applied to the LMS algorithm to generate errors used to update the weight

vectors. During the training portion of the classifier, the feature vectors are from signals of

known modulation type. Then the classifier calculates the actual output from each weight

vector. The initial weights are initially set equal to zero and are subsequently updated during

the adaptation. The gain constant is determined use of a formula given by Widrow and

AVISteams as (Widrow and Steams, 1985:103)
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Figure 3-10. Feature Vectors Applied to Classification Algorithm
4: (Widrow and Steams, 1985:101)

0< g. < (3-8)
(L + 1)" ( signal power)

where

L + 1 = number of elements in weight vector

signal power = xTx

In practice, the value of . is chosen to be an order of magnitude less than the upper limit

given by equation (3-8) (Widrow and Steams, 1985:103).

The training consists of cyclically applying a set of known vectors from each

modulation type to the classifier for a specified number of iterations. It is during this training

that the elements of each weight vector converge to their final values.
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After the training is completed, signals of unknown modulation types are input to the

classifier which then assigns them to classes based upon evaluation of the decision functions.

In this thesis the decision functions are evaluated in parallel. The class decision is made by

selecting the decision function with the largest output as shown in Figure 3-11.

W

2:Select Class
X ,Ie mership

TLargest Decision

Figure 3-11. Method of Class Membership Decisions (Lippmann,1987:5)

Summary

The theory required for an understanding of the operation of this classification

scheme has been presented. The classification begins with the calculation of features from the

signal. The envelope statistics provide information concerning amplitude or angle

modulation. The spectrum of the signal allows estimates of carrier frequency, and level of

FSK. The spectra of the signal squared and quadrupled provide features for the

determination of level of phase modulation.
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The classification algorithm uses an adaptive procedure which first operates upon a

set of feature vectors obtained from known classes to generate weight vectors. After the

weight vectors have converged, the classifier is ready to operate upon unknown signals. The

next chapter explains the procedure used to classify signals according to the theory presented

in this chapter.
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IV. PROCEDURE

Introduction

This chapter presents the procedure used during the computer simulation which

performs the classification process described in the preceeding chapter. First, the sample

rate and the observation interval of the computer generated signals are justified. Second, an

overview of the structure used for the processing is described. This overview shows the

flow of signals from the waveform stage to feature vector stage to classification in a

conceptual fashion.

The steps of the feature extraction process are then described. The feature extraction

process is presented here because feature vectors are needed to train the adaptive classifer.

The features extracted are used as elements of the feature vectors. The construction of the

) ,feature vectors from these elements is presented. Also, the method used to train the

classifier is described. Then, the classification of signals from their feature vectors is

presented.

The summary reviews the major topics of the overall classification procedure. The

processing software is referenced in the corresponding appendices.

Computer Generated Signals

The waveforms generated for this experiment are digitally modulated signals and

noise. The parameters for each type of waveforms are presented in this section.

Generation of Digitally Modulate Signals. The signals segments used in this

experiment consist of 8192 samples with an intersample period of 1 microsecond. The

symbol rate for all signals is 2500 symbols per second. This results in 8.192 milliseconds of

data which corresponds to 20.48 symbols per observation interval. The need for baseband

sampling as opposed to bandpass sampling is discussed in a later section.
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The center frequency for BASK, BPSK, and QPSK signals is 100 kHz. This was

selected for convenience and is not a typical intermediate frequency of a receiver. However,

this does not affect the performance of the classification procedure. The frequencies of the

BFSK signal are 80 and 100 kHz and were again chosen for convenience. The programs

which generate BASK, BPSK, QPSK, and BFSK are named OOKGEN,

BPSK,QPSKGEN,and FSKGEN. They are listed in Appendix B.

Generation of Noise. The noise used in this experiment was additive white gaussian

noise which was generated by summing 50 random vectors whose elements were uniformly

distributed over -0.5 to 0.5. The resultant vector has 8192 elements with a gaussian

distribution of zero mean and unity variance. The unity variance was achieved by scaling the

elements. This random vector is then used as a noise waveform which is added to the

signals generated above. The desired signal to noise ratios are obtained by scaling the

amplitude of the carrier waveform to the desired values. The program which generates noise

Cis named GAUSS and is listed in Appendix B.

Structure of the Procesor

The signal flow through the feature extraction and classification steps are the same for

all types of signals. The structure of the processor is shown in Figures 4-1 and 4-2. The

nine elements of the feature vectors are obtained from the signal's envelope, the spectrum of

the signal, the spectrum of the signal raised to the second power, and the spectrum of the

signal raised to the fourth power. Assuming the classifier has been trained and has valid

weight vectors, the feature vectors are then used as inputs to the classifier which performs

the classification as explained in the previous chapter.
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Feture Extraction

The features used in this classification procedure are calculated from

four fundamental operations upon the unknown signal. One of the operations is the

calculation of the mean and variance of the envelope of the waveform. Another operation is

the searching of the spectrum of the signal for the two largest peaks. The third operation

searches the spectrum of the signal squared for peaks near twice the intermediate frequency.

The fourth operation searches the spectrum of the signal raised to the fourth power for

peaks near four times the intermediate frequency. Each of these operations are described

below.

Features from the Envelope. The first processing function calculates the envelope of

the waveform. This is accomplished by the program ENVELOPE, which is listed in

Appendix B. The mean and variance of the envelope are then calculated by the program

STATS which is listed in Appendix B. The mean and variance of the envelope are the first

two elements of the feature vectors.

Features fQrn the Spectrum of the Signal. The next step in the processing is to

calculate the spectra of the signal. The spectra calculated here are the result of averaging

two 4096 point spectra. 'I tie i MHz samaple rateresults in frequency bins of 244.140625

hertz. Rectangular windowing is used on the data and it is then passed to the FFT

subroutine in the program SPECAVG. Rectangular windowing was chosen over any other

windowing since it provides the least amount of spreading of spectral energy (Rabiner and

Gold,1975:95). SPECAVG is listed in Appendix B.

The resultant spectra are correlated with a sinc 2(x) function which has a null to null

bandwidth of 5 kHz. This bandwidth corresponds to the theoretical bandwidth of all the

signals considered. Before the correlation is performed in the program SPECOR, both

spectra (the magnitude spectrum of the signal and the sinc2(x) spectrum) are normalized to

unity energy. This normalization is necessary in order for all correlation values to range

4-4



from zero to unity. SPECOR is listed in Appendix B.

The features obtained from this stage are selected by the program BIGVALS. This

searches the result of the preceeding correlation for the two largest values. These values

and their spectral locations provide the next four elements of the feature vectors. The

search ignores points within ten points of the largest value in order for the search to ignore

large values from the same spectral lobe. BIGVALS is listed in Appendix B.

Feature from the Spectrum of b& 5 SQuared. The next step is to calculate the

magnitude spectrum of the signal raised to the second power. This is the step intended to

provide information related to BPSK signals. The resultant spectrum is correlated with a

sinc2(x) function of 1 kHz null to null bandwidth. Although the search is for narrowband

energy, consistent detection of energy near twice the intermediate frequency was obtained

without using a smaller bandwidth sinc2(x) function. Recall, in the previous chapter this

value was specified to be determined empirically. Satisfactory results were obtained with

this bandwidth of the reference function.

The program which performs the correlations sets the dc portion of the spectrum to

zero prior calculating its energy which is also prior to the correlation. This is to eliminate

the response near zero hertz due to squaring and quadrupling the signal.

The result of the correlation is searched for a peak amplitude. However, in this case,

only points within a range of 100 kHz of twice the carrier frequency are considered in the

search. The feature obtained from this procedure is the amplitude of the peak within the

search range. The spectral location was the same for all signals of the training set;

therefore, this would not provide information useful for the separation of classes. The

program which performs this search is named SVAL and is listed in Appendix B.

Features from the Spectrum .f the SI Quadrupled, The next two features are

obtained from the spectrum of the signal raised to the fourth power. This step of the

processing provides information related to QPSK signals. The sptctrum of the signal

which has been raised to the fourth power is searched for the largest value near four times
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the intermediate frequency. The value of the correlation peak and its spectral location are

used as the eighth and ninth elements of the feature vectors. The program which does this

search is named QVAL and is listed in Appendix B.

The need to perform the sampling as baseband and not bandpass is explained by

noting that the features extracted in the above steps were dependent upon the intermediate

frequency and its second and fourth multiples. Had the signals been bandpass sampled, the

information related to the intermediate frequency would have been lost.

Construction gf the Feature Vectors. The feature vectors consist of elements whose

values may range from on the order of unity to the order of thousands. For example, all the

peak con-elation values will be less than one, while the spectral location of the correlation

peak of the signal raised to the fourth power is above 1600. This number is the FF1' bin

number, not a frequency value. In order to prevent this one element from dominating the

adaptation and classification procedure, all elements are scaled to range from zero to one.

The method used in this experiment to normalize the feature vectors is now explained.

The normalization is performed over the sets of signals grouped according to SNR. In

practice, the normalization could be performed over the signals collected during one event if

off line classification were feasible. Near realtime classification would require that the

elements be scaled to values between zero and one before constructing the feature vectors.

The normalization operates upon the same element of each feature vector at a time.

The first element of each vector is searched for the highest and lowest values. For

example, assume the highest value is a and the lowest value is b. The range is found by

subtraction to equal a - b. T7hen b is subtracted from each element. The result of this

subtraction is then divided by the range. This normalization provides elements between the

values of zero and one for each element of all the feature vectors.

Training the Clasifkr

The training of the classifier is performed by using feature vectors which are

calculated from signals whose class is known. The signals used for training in this
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experiment had 20 dB signal to noise ratios. One feature vector is calculated from each

class. These feature vectors are then cyclically applied to the LMS algorithm for a fixed

number of iterations.

The output of the algorithm is a weight vector for each class of signal considered.

During training, the desired response is a function of the input feature vector and the weight

vectors used. This is illustrated in Figure 4-3. The program which uses this algorithm is

named THELMS and is listed in Appendix B.
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Y d ij

w 4
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Figure 4-3. Training Using the LMS Algorithm

The feature vectors which have been calculated from known classes are cyclically

applied to the algorithm. The weight vectors for each class of signals are updated during

each iteration. The procedure is shown in Figure 4-3. The equation used to update the

weights is given in equation (4-1) as (Widrow and Stearns, 1985:103)

wi(k + 1) = wi(k) + 2.[dij - y(k)] • xj(k) (4-1)

4-7

A Jil
sii NW w



where

i = class indicator for weight vectors

j = class indicator for feature vectors

wi(k + 1) = weight vector for class i at next iteration

wi(k) = weight vector for class i at present iteration

t. = gain constant

dij(k) = 1; i=j

= 0; i~j

y(k) = wiT(k) • xj(k)

xj(k) = feature vector from class j

This algorithm is applied to the feature vectors generated from 20 dB SNR signals. The

convergence of the weight vectors are confirmed by running several trials with different

numbers of iterations and different values of the gain constant. The weight vectors used in

this experiment are calculated from 100000 iterations of the LMS algorithm with a gain

constant of 0.001185. The convention for specifying class membership is that BASK,

BPSK, QPSK, and BFSK belong to class 1, class 2, class 3, and class 4.

Classification of Unknown Signals

The weight vectors calculated in the previous section are used in the classification of

unknown signals as shown in Figure 4-4. A program named THECLASS performs the

'select largest" function of the figure. THECLASS is listed in Appendix B.

The unknown signal is processed to generate a feature vector, shown in the figure as

xi. This feature vector is then multiplied with the four weight vectors. These are the weight

vectors calculated by the LMS algorithm during the training. The equations used in this

classification process may be written as
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Figure 4-4. Classification Using Weight Vectors

d = wiT" xj ; i = 1,2,3,4 and j = 1,2,3,4 (4-2)

Class memebership is determined by selecting the class which corresponds to the weighting

function which produces the largest output.I Summary

In this chapter, the classification process has been presented. Details of the feature

extraction, training, and classification portions have been given along with the program

names which perform the calculations. The results of applying this procedure to the four

classes of signals is presented in the next chapter.
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V. RESULTS

Introduction

This chapter presents the results of the experiment performed to classify signals

according to modulation type. The procedure used has been described in the previous

chapter. In this chapter, the parameters used for the generation of the modulated signals are

given. Then, the feature vectors generated from these signals are presented. The next

section shows the results of using the weights obtained by the LMS algorithm to perform

signal classification. This chapter concludes with a summary of the results of this classifier

on the signal set.

Signil Generation

There are five basic sets of signals used in this experiment. The first set of signals is

used for training the classifier and the remaining four sets are used to test the performance of

the classifier on unknown signals. The convention for specifying class membership is that

BASK, BPSK, QPSK, and BFSK belong to class 1, class 2, class 3, and class 4.

Generation of Training Signals. The signals used to trained the classifier consist of

one sample from each of the classes considered in this experiment. The SNR for this set is

20 dB. This value is obtained by scaling the amplitude of the carrier. The power of the

signal classes considered here is calculated in equation (5-1) as (Gagliardi,1978: 19)

P = A2/2 (5-1)

where

P = peak signal power

A = amplitude of sinusoidal carrier
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Since the noise has unity variance and is zero mean, its power is equal to one. Therefore, the

SNR in dB is computed as (Gagliardi,1978:20)

SNR = 10 log( A2/2) (5-2)

Alternately, the amplitude of the carrier can be written as a function of signal to noise ratio by

rearanging equation (5-2). Doing so, we obtain

A - 21/2- 10 SNR/20 (5-3)

For example, to obtain a SNR of 20 dB, the amplitude of the carrier is found to be

approximately 14.14 volts. The resultant noisy waveform used in the classification

procedure is obtained by adding a file of noise points to the file of modulated data points.

The same noise file is used to corrupt each of the waveforms in the training set.

The modulating data is 21 consecutive bits chosen from a pseudonoise sequence. The

data for BASK, BPSK, and BFSK consists of the same 21 bits. Since QPSK bauds convey

two bits per symbol as opposed to the binary modulation schemes, more data bits are

required to obtain the same observation interval as the other signal classes. Therefore, 42

bits are used, with the first 21 bits being the same as the binary modulation schemes. The

next 21 bits of the pseudonoise sequence are used to obtain the second half of the QPSK

data. Segments of the waveforms at 20 dB SNR from each class of signals are shown in

Figures 5-1 through 5-4. Feature vectors are then calculated from these four samples of

signals as described in the previous chapter.
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Generation of the Unknown Signals.

The unknown signals are generated in a similiar fashion as the signals used in the

calculation of the feature vectors. The differences are that the underlying data is different

from the training set and a different noise file is used to corrupt the signals. Another set of

signals from each class is generated at 20 dB SNR. The underlying data is different than the

training set and the noise comes from a different nose file of unity variance.

The next set of signals is generated in the same manner as above but the amplitude is

scaled to acheive a 15 dB SNR, the data bits are different than from the first two sets of

signals and a new noise file is used. The fourth set of signals is generated at a 10 dB SNR

with new data bits and a new noise file. The fifth set of signals is generated at a 5 dB SNR

with new data bits and a new noise file.

Figures 5-5 through 5-7 show BASK and BPSK waveforms at the 15, 10, and 5 dB

SNRs considered in this experiment. These classes of signals are chosen in order to

illustrate the effect of noise on the waveforms of amplitude and angle modulated signals.
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Figure 5-5. Samples of BASK and BPSK at 15 dB
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Calculation of Feature Vectors

The signals are operated upon by the feature extraction and feature vector

normalization processes described in the previous chapter. Feature vectors calculated from

the four different sets of signals are presented in Table 5-1. When these feature vectors

Table 5-1. Feature Vectors from 20 dB SNR Signals

Description BASK BPSK QPSK BFSK

mean 0.00000 0.99721 1.00000 0.99400
variance 1.00000 0.00126 0.00429 0.00000
maximum 1 1.00000 0.04105 0.66320 0.00000
location 1 1.00000 0.97559 0.98782 0.00000
maximum 2 0.00000 0.19540 0.06738 1.00000

location 2 0.00000 0.88890 0.94447 1.00000

squared 0.40009 1.00000 0.00000 0.31237(tk quadrupled 0.00700 0.15270 1.00000 0.00000
augment 1.00000 1.00000 1.00000 1.00000

are used to train the classifier, the weight vectors of Table 5-2 are generated.

The description columns of the tables refer to the feature extraction portion of the

experiment. The first and second elements in each feature vector are related to the mean and

variance of the envelope. BASK has the smallest mean and largest variance. The third and

fourth elements are the result of the correlation of the spectrum of the signal with the sinc 2(x)

reference function. The elements correspond to the correlation value and offset to this value,

respectively. The fifth and sixth elements of the vectors are similar to the third and fourth,

except they are related to the second largest correlation value and its offset. The seventh

element is derived from the correlation of the spectrum of the signal squared with the sinc2(x)

reference function. It corresponds to the largest correlation value found near twice the

Jintermediate frequency. The eighth element is similiar to the seventh except it is the result of

searching the correlation of the spectrum of the signal raised to the fourth power with the
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Table 5-2. Weight Vectors

Description BASK BPSK QPSK BFSK

mean -0.18255 0.12045 0.13634 0.09367
variance 0.40205 -0.19119 -0.14394 0.15369
maximum 1 0.29829 -0.36294 0.21310 0.06203
location 1 0.07248 0.35930 0.10177 -0.39277
maximum 2 0.10760 -0.29654 -0.13564 0.56082

location 2 -0.15284 0.03968 0.13853 0.15205
squared 0.01894 0.66547 -0.40747 -0.18181
quadrupled -0.17228 -0.18061 0.51185 -0.17937

augment 0.22078 -0.07073 -0.01114 0.25080

sinc2(x) function. The value is related to the largest correlation peak found near four times

the intermediate frequency. The ninth element is called the augmentation of the feature

vectors. This constant value allows the LMS algorithm to account biases in the feature

vectors (Widrow and Stearns, 1985:17).

Classification Results.

The results when the feature vectors are multiplied with the weight vectors are shown

in Table 5-3. For each class of signal, the largest result of the multiplication occurs when the

weight vector is matched to the class of signal.
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Table 5-3 Classification Results

WITX W2 TX W3TX W4TX

20 dB

BASK 0.8300 -0.0592 0.2167 0.1728

BPSK 0.087 5 0.9702 -0.1045 -0.0272

QPSK 0.1726 -0.0862 0.8996 -0.1609

BFSK 0.3508 -0.4222 0.1772 1.0070

15 dB

BASK 0.7107 -0.0734 0.2521 0.1771

BPSK 0.0379 0.9505 0.0014 -0.0170

QPSK -0.0582 0.2265 0.7370 -.2281

BFSK 0.4026 -.1883 0.0012 0.9091

10 dB
BASK 0.8544 -0.0302 0.1699 0.1641

BPSK 0.1887 0.7744 0.1770 0.0132
QPSK -0.1027 -0.2071 0.6016 0.3066

BFSK 0.3266 0.2093 0.1643 0.5617

5 dB

BASK 0.9609 -0.1639 0.0836 0.0637

BPSK 0.0375 1.0678 -0.566 -0.1530

QPSK 0.0375 0.0.0125 0.9026 -0.0579

BFSK 0.1618 -0.6281 0.6975 0.9498

Srm
This chapter has presented the results of a classification experiment which was

designed to spearate four classes of signals. The modulation types considered were BASK,

BPSK, QPSK, and BFSK. A set of feature vectors were calculated for 20 dB SNR signals

from each class. These feature vectors were used for training the classifier. The LMS
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algorithm was used to calculate weight vectors used to classify 16 unknown signals.

The 16 signals consisted of one sample of each signal class at 20, 15, 10, and 5 dB

SNRs. Different data symbols and noise files were used in the generation of the signals at

different SNRs. The classification procedure, correctly identified all 16 signals.

The final chapter of this thesis presents some conclusions about this classification

procedure and some recommendations for further study.

51
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VI.. Conclusions

Introduction

This chapter presents some of the conclusions applicable to the classification procedure

explained in the preceeding chapters. Then, some recommendations for further study are

discussed.

Conclusion;

The technique presented here uses features which are calculated using conventional

signal processing methods and shows favorable classification properties for the following

classes of signals: BASK, BPSK, QPSK, and BFSK. The amount of preprocessing

required for feature extraction is comparable to the preprocessing required by the classifiers

due to Liedtke and Jondral (Liedtke,1984; Jondral,1985). The number of sample points and

the observation intervals are comparable between all techniques presented here.

The most interesting conclusion is that a new feature for the identification of the

number of phase states of a phase shift keyed signal has been shown to provide adequate

information to identify BPSK and QPSK at SNRs down to 5 dB. However, the

conclusiveness of these results are limited due to the small number of signals used.

Recommendations for Further Study

As recommendations for further study, several options should be considered. The

purposes of the recommendations are to provide additional information about the

performance of the classification procedure. These recommendations are presented below.

L&= e&I of Signals. The first recommendation is that the classifier be tested with

hundreds of signals from each class. Different noise and data files should be used during

this testing. Then, the results of the classification procedure would be more conclusive. The

researchers of the literature review use this order of magnitude of signals during performance

testing of their classifiers.

6-1
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Estimate Bandwidth of Signal. The second recommendation is that methods be

explored to estimate the bandwidth, and thereby the symbol rate, of the unknown signal.

One possible source of this information is the result of the correlation of the spectrum of the

signal with the sinc2 (x) function. The bandwidth of the major peak is related to the width of

the central lobe and to the width of the sinc 2 (x) function. Since the width of the sinc 2(x)

function is known, the bandwidth of the unknown signal could be calculated.

Simulated Environment. A more realistic signal environment would be another factor

to consider in order to fully test this technique. In addition to AWGN, single and multiple

interferers should be considered and their effects upon classification performance measured.

Types of inteference should include continous wave signals, nearby analog modulated

signals, and nearby digitally modulated signals. Performance of the classification procedure

as a function of the strength and frequency offset of the interferers could then be measured.

In addition, the effect of shaping the pulses used during modulation should be investigated.

Additional Modulation Types. This classification technique was tested on four classes

N of signals. By straightforward extension of the ideas presented here, this method should be

able to classify 8-PSK and QFSK. In addition, this method could be tested for its ability to

classify minimum shift keyed (MSK) signals. MSK signaling is a form of BFSK where the

frequency separation is the smallest amount possible to obtain orthogonal signaling

waveforms (Cooper and McGillem,1986:187) Alternatively, MSK may be viewed as a

special case of QPSK (Stremler,1982:599). The phase of the MSK waveform changes by

7/2 during each symbol interval (Stremler,1982:600). Therefore, MSK may be classified as

BFSK or QPSK. The goal of this recommendation is to investigate a method which

classifies MSK not as BFSK or QPSK but as MSK. There is a possibility that ti - method

presented in this thesis may be able to perform this classific-tion.

6
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Appendix A: Signal to Noise Ratio Analysis of Fourth Law Device

Introduction

In the "Features from Spectra of Signal Raised to Powers" section of the Theory

chapter, a signal is applied to a fourth law device. A signal to noise ratio analysis of such a

device is presented here.

Calculation 9_f Sig.1 o Noise Ratio at the put. The input signal to the fourth law

device is represented as

x(t) = s(t) + n(t) (A-1)

where

s(t) = waveform of modulated signal

n(t) = narrowband gaussian noise with zero mean and variance v2

The ouput signal is represented as y(t). These relationships are shown in Figure A-1. First,

the SNR at the input to the device is calculated. The signal power is given as (Gagliardi,

1978:19)

P = A2/2 (A-2)

Since the noise is zero mean, its power is equal to its variance (Ziemer and

Tranter,1976:224). This is written as

N = v2  (A-3)
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Figure A-1. Signal and Noise Applied to Fourth Law Device

The signal to noise ratio at the input is now formed by dividing equation (A-2) by equation

(A-3). This results in

SNRin = A2/2v 2  (A-4)

The output signal to noise ratio is calculated in the next section.

Calculation of the Signal to Noise Ratio at the Output. In order tn calculate the output

signal to noise ratio, the power in the noise at the output of the fourth law device must be

calculated. Since the problem leading to this appendix concerns the noise power at some

frequecy other than dc, the variance will be calculated since this is equal to the ac power.

This will be done assuming a gaussian zero mean noise process with variance of v2 at the

input to the device. Let Z represent the random variable at the output of the device. Then, Z

may be written as
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Z = n4(t) (A-5)

The variance of Z is now calculated. Using the fundamental theorem of expectation

(Gardner, 1986:29)

g(x)) J g(x) -f(x) dx (A-6)
-00

In this case g(x) represents the fourth law device and f(x) is the zero mean gaussian

probability density function with variance v2. In order to find the variance of Z, the formula

Var( Z ) = E ( Z2 ) - E2 ( Z ) will be used (Ziemer and Tranter, 1976:224). First, Ef( Z ) will

be calculated. Substituting these relationships into (A-6) gives

00

Ef Z I =41/(27Ev2)] 112 J n4 -exp [ -n2/2v21 dn (A-7)
-00

Since the integrand is an even function of n, equation (A-7) may be written as

CIO

E[ Z 2 = [l/(2it)v2 ] 1/2 4f n4 -exp [ -n2/2v21 dn (A-8)
0

Equation (A-8) is similiar to a standard form given in the CRC Standard Mathematical

Tables as (Hodgman, 1959:3 13)
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fx2n -exp [ ax2] dx= 1 -35 .(2n - ) - (a)" 2 (A-9)
0 2n+l a

In this case n = 2 and a = 1/2v2 . Hence,

E{( Z I=2[1/(2nr)] 1 /2 (3/8v) -(1/4v4) .[7r/(1/2v 2)]11 2  (A-10)

After simplification,

E( Z) =En 4} =-3v 4  (A-1l)

In a similiar fashion, E{ Z2 ) is found to be

E( Z2 I E~n81 = 105.v 8  (A-12)

The variance of z is now calculated using the formula given above

Var{ Z) =E{Z2 )- E2 ( Z

= 105v 8 -9v 8

= 96(v2)4  (A-l13)

Equation (A-13) is the variance of the random process at the output of a fourth law device

when the input is zer-o mean gaussian noise with a variance of v2.

Next, the signal power at the output of the fourth law device will be calculated.

The signal s(t) is assumed to be of the form
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s(t) = Acos(wct +0) (A- 14)

This signal is applied to the input of the fourth law device. The output is calculated to be

equal to

(A4 /4)- [ 1 + 2cos(2wt) + 1/2 + (1/2)cos(4wt)] (A-15)

For the purposes of this thesis, only the signal component at four times the carrier frequency

is required. This signal component is

(A4 / 8). cos(4wt) (A- 16)

The power in this component is calculated using the formula for sinusoidal signals, as

before. In this case

P = (A8 / 64) (1/2) -- A8 / 128 (A-17)

This is the power at the output of the fourth law device due to the signal input. Using the

result from the above calculation, the output signal to noise ratio is given as

SNRo = A8 / 128 96(v 2)4  (A-18)

The input to output SNR relationship is formed by taking the ratio of the output to

input signal to noise ratios. This gives

SNRoSNRin = [(A2)4/128 • 96(v 2)4 I / [A2/2v 2]  (A-19)

A-5
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After simplification and the rearrangement of terms, (A-19) can be written as

SNR4,/SNRin = (A2 / 2v2)3 / 768 (A-20)

This is equivalent to

SNRc,/SNRin = (SNRin )3 /768 (A-21)

Hence, the output SNR is given in terms of the input SNR as

SNRo = (SNRin) 4 / 768 (A-22)
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Appendix B: Program Listings

This appendix presents the listings of the programs used to perform the operations

decsribed in Chapter IV. The listings begin on the following page.
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C THIS PROGRAM GENERATES 00K DATA PLUS NOISE

PROGRAM OOKGEN

C DATE 28 OCT 1987

BYTE PNBUF(256) I BUFFER 0F BITS OF PNCODE
REAL CARBUF(400) I BUFFER OF CARRIER POINTS
REAL RAWBUF(400) I BUFFER OF MODULATED CARRIER
REAL NEBUFF(400) I BUFFER OF NOISE POINTS
CHARACTER*32 FRIAME
CHARACTER DUN I DUMM~Y

C--- SOME USEFUL NUMBERS

P12 - 6.283185307
PSAM4P - 1000000.

C--- ENTER FREQUENCY OF CARRIER

WRITE(6,390)
390 FORMAT(2x,'ENTER CARRIER FREQUENCY: 'S

READ(6,391) FREQ
391 FORMAT(G)

C--- ENTER BIT RATE

WRITE(6,15)
15 FORMAT(2X,'ENTER BIT RATE: '$

READ(6 .16 )BITRAT
16 FORMAT(G)

C --- CALCULATE NUMBER OF SAMPLES PER BIT

NSMPDT - 1000000./BITRAT

C --- GET SOME FAKE BITS FROM THE PNCODE

CALL PNREAb( PNBUF ,NBITS)

C --- OPEN OUTPUT FILE

OPEN( UNIT - 13,
9 NAME - 'OOK.DAT,
9 STATUS - 'NEW,
9 ACCESS - 'SEQUENTIAL')

C--- THIS NEXT STUFF IS FOR A MATRIXX FILE

WRITE(13,55)
55 FORMAT('Y-('

C--- GET SOME CARRIER POINTS TO MULTIPLY WITH THE DATA

OPEN (UNIT - 14,
9 NAME - 'CARRIER.DAT',
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

C--- NOW OPEN NOISE -ILE, SINCE I'LL NEED IT LATER

VRITZ(6,134)
134 rORKAT(2X'ENTER NAM4E OF NOISE FILE: '$

READ(6,135)FNAME
135 FORMAT(A)

OPEN (UNIT - 15,
9 NAM - FNAME,
9 STATUS 'OLD',

B-2
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9 ACCESS - 'SEQUENTIAL')

RESAD(15,136)DUm I DUMP MATRICX OPENING
136 FORMAT(A)

C --- NOW DETERMINE AMPLITUDE OF CARRIER BASED UPON DESIRED SNR
C --- UNITY VARIANCE GAUSSIAN NOISE

WRIT5(6,707)
707 FORMAT(2X,'BNTER DESIRED SNR ( dB) 'S

RSAD(6,70S)SNRt
708 FORMATIG)

AMP - SQRT(2. * 10.0 ** (SNR/lO.)

73 FORMAT(G)

C-- MULTIPLY THE CARRIER POINTS BY THE DATA, ADD NOISE AND
C THEN WRITE TO OUTPUT FILE

ICNT =0

DO JJ -1.NBITS

DO KK a 1,NSMPBT
READ(14,73) CARBUF(KK)
READ(15,10) NZBUFr(KK)
RAWBU7(KK) - AMP * CARBUr(KK) *PNDUr(J3) + NBUF(Kx)
WRITE(13,1O) RtAWDUFfEK)

END DO

END Do

10 rORMAT(G)

C--- WRITE MATRtxxX 30?

WRITE(13,56)
56 FORMAT(')')

CLOSE(13)
CLOSE(14)
CLOSE(15)

STOP
END
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C THIS PROGRAM GENERATES SPS1K

PROGRAM BSU

C DATE 26 OCT 1987

BT?. PNBUF(256) I SUFFER OF BITS OF PNCODE
REAL CARSUF(400) I BUFFER OF CARRIER POINTS
REAL RAWBUF(400) I BUFFER 0? MODULATED CARRIER

C--- SOMEZ USEFUL NUMBERS

P12 - 6.283185307
FREQ a 100000.
PSAMP a 1000000.

C-- ENTER BIT RATE

WRITE(6,15)
15 FORMAT(2X,'ENTSR BIT RATE: ,$

RZAD(6,16)BITRAT
16 ?oRJlAT (G)

C--- CALCUJLATE NUMBER OF SAMPLES PER BIT

MUMPB? - 1000000./BITRAT

C-- GET SOME FAKE SITS FROM THlE PNCODE

CALL PNREAD( PNBUF ,NBITS)

C-- OPEN OUTPUT FILE

OP9EC UNIT a 13,
9 NAME - 'BPSX.DAT',
9 STATUS w 'NEW',
9 ACCESS - 'SEQUENT IAL'

C--- THIS NEXT STUFF IS FOR A MATRIXX FILE

WRITE(13,55)
55 FORMAT('Y - (')

C-- OCT SOME CARRIER POINTS TO MULTIPLY WITH THE DATA

OPEN (UNIT - 14,
9 NAM4E - 'CARRIEft.DAT',
9 STATUS m 'OLD',
9 ACCESS - 'SEQUVNTIAL')

73 FORMAT(G)

c- MULTIPLY THE CARRIER POINTS BY THE DATA, THEN WRITE TO OUTPUT FILE
c--- spsa FORMED BY CuAmGtNG 1/0 DATA TO (+/-) 1 DATA

DO JJ . 1.NBITS

0O KIC - 1,NSMPDT
RZAD(14,73) CANBUF(ICK)

RAWBUF(XK) - CARSUF(KI() *C(PNBUF(.7J)-.5) *2.)

warTE(13,10) RAWBU(CIC

END DO

10 FO3MT(a)
13 FORMAT(2X,'PIBUFF IS: ',I)
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56 RZTE(13,56J

56 FORtATC'J'?

CWCSE(131

STOP
END

B-5



C THIS PROGRAM GENERATES QPSK DATA PLUS NOISE

PROGRAM QPSKGEN

C DATE 28 OCT 1987

BYTE PNBUF(256) I BUFFER OF BITS OF PNCODERLALL CARBUF(400) I BUFFER OF CARRIER POINTS
REAL- RAWBUF(400) I BUFFER OF MODULATED CARRIERREAL NZBUFF(400) I BUFFER OF NOISE POINTS
BYTE DATBUF(128) I BUILD QUATS FROM BINARY DATAREAL EBUF(22) I BUFFER TO HOLD EVEN NUMBERED DATA BITSREAL OBUF(22) I BUFFER TO HOLD ODD NUMBERED DATA BITS
CHARACTER*32 FRAME
CHARACTER DUM I DUMMY

C--- SOME USEFUL NUMBERS

P12 - 6.283185307
FSAMP , 1000000.

C--- ENTER FREQUENCY OF CARRIER

WRITE(6,390)
390 FORMAT(2X,'ENTER CARRIER FREQUENCY: ',$)

READ(6,391) FREQ
391 FORMAT(G)

C--- ENTER BIT RATE

WRITE(6,15)
15 FORMAT(2X,'ENTER SYMBOL RATE: ',$)

READ(6,16 )SYMRAT
16 FORMAT(G)

C--- CALCULATE N;"BER OF SAMPLES PER BIT

NSMPBT - IO00000./SYMRAT

C--- GET SOME FAKE BITS FROM THE PNCODE

CALL PNREAD (PNBUF, NBITS)

C--- OPEN OUTPUT FILE

OPEN( UNIT a 13,
9 NAME - 'QPSK.DAT',
9 STATUS - 'NEW',
9 ACCESS - 'SEQUENTIAL')

C--- THIS NEXT STUFF IS FOR A MATRIXX FILE

WRITE(13,55)
55 FORMAT('Y - 1,)

C--- GET SOME CARRIER POINTS TO MULTIPLY WITH THE DATA

C--- NOW OPEN NOISE FILE, SINCE I'LL NEED IT LATER

WRITE(6,134)
134 FORMAT(2X'ENTER NAME OF NOISE FILE: ',$)

READ(6,135)FNAME
135 FORMAT(A)

OPEN (UNIT - 15,
9 NAME = FNAME,
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')
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36 READ(15,136)DUM I DUMP MATRIXX OPENING

C --- NOW DETERMINE AMPLITUDE OF CARRIER BASED UPON DESIRED SNR
C --- UNITY VARIANCE GAUSSIAN NOI1SE

WRIT(6,707)
707 PORMAT(2X,.ENTER DESIRED SNM ( dB) 'S

aahDT-6,706 )SNR
708 FORUIT(G)

AMP - SQRT(2. ' 10.0 ** (SNR/10.j

73 FORMAT(G)

C --- BUILD LOOK AT 2 BITS OF PNBUr TO DETERMINE HOW MUCH PHASE
C --- TO ADD TO THlE COSINE TO GET THE PROPER QPSK ACTION

C --- SEPARATE EVEN AND ODD BITS

DO EN - 1,NBITS/2
EBUF(KK) - PNBUF(2*KK)
OBUF(KK) a PNSUF(2*KK - 1)

END DO

C --- SOME USEFUL NUMBERS

PI - 3.1415926
DELTAT a I./FSAMP

C --- DEFINE PHASE SHIFTS

PHIl - P1/4.
PH112 - 3.*PI/4.
PH113 - 5*PI/4.

PH114 = - PI4

C--- CHOOSE APPROPRIATE PHASE SHIFT

DO KK - 1,NBITS/2
IF( (ESUF(KK) .EQ. 0) .AND. (ODUF(KK) .EQ. 0) )PHI - PHIl
IF( (EBuF(KK) .EQ. 0) .AND. (OBUF(KK) -EQ. 1) )PH! - PH12
IF( (EBUF(KK) .EQ. 1) .AND. (OBUF(KK) -EQ. 0) )PHI a PH113
IF( (ESU?(KK) -EQ. 1) .AND. (OBUF(KK) -EQ. 1) )PHI - PH14

C--- GENERATE COS(wt + PHlIn) + NOISE AND WRITE TO OUTPUT FILE

DO 33 a 1,NSMPBT

cARBUr(JJ) - COS(PI2ZFREQaFWAT(3j)*DELTAT + PHI)
READ(15,10) NEBUFF(JJ)
RAWBUr(JJ) - AMP * CARBUF(33) + NEBUFF(JJ)
WRITE(13,10) RAWBUF(JJ)

END DO

END DO

10 FORMAT(O)

C--- WRITC MATRIXX ZOF

WRIT(13,56)
56 FORMAT ( II )

CLWSE(13)
CLOSE( 15)

B-7



STOP
END
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C THIS PROGRAM4 GENERATES FPSK DATA PLUS POISE

PROGRAM FSKGEN

C DATE 28 OCT 1987

BYTE PNBUF(256) I BUFFER OF BITS OF PNCODE
RE1.LT CARBUF(400) I BUFFER OF CARRIER POINTSREAL CARBUF2(400) I BUFFER FOR OTHER CARRIER
REAL RAWBUF(400) I BUFFER OF MODULATED CARRIER
REAL NZBUFF(400) I BUFFER OF NOISE POINTS
REAL RBUF(256) I REAL BITS
CHARACTER*32 FNAKE
CHARACTER DUM DUMMY

C --- SOME USEFUL NUMBERS

P12 - 6.283185307
FSAM4P - 1000000.

C --- ENTER BIT RATE

WRITE(6,15)
15 FORMAT(2X,'ENTER BIT RATE: '$

READ(6,16)BITRAT
16 FORMAT(G)

C --- CALCULATE NUMBER OF SAMPLES PER BIT

NSMPBT - 1000000./BITRtAT

C--- GET SOME FAKE BITS FROM THE PNCODE

CALL PNREAD (PNDUF ,NSITS)
WRITE(6,166)NBITS

166 FORMAT(2X,I)

C--- OPEN OUTPUT FILE

OPEN( UNIT - 13,
9 NAME - 'FSK.DAT',
9 STATUS - 'NEW',
9 ACCESS -'SEQUENTIAL,)

C--- THIS NEXT STUFF IS FOR A MATRIXX FILE

WRITE(13,55)
55 FORMAT('Y . 1')

C--- GET SOME CARRIER POINTS TO MULTIPLY WITH THE DATA

OPEN (UNIT - 14,
9 NAME - 'CARRIER.DAT',
9 STATUS a 'OLD',
9 ACCESS a 'SEQUENTIAL')

OPEN (UNIT - 24,
9 NAME - 'CARRIER2.DAT',
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

C--- NOW OPEN NOISE FILE, SINCE I'LL NEED IT LATER

134 FORMAT(2x'ENTER NAME OF NOISE FILE: '$
RBAD(6,135)FNAuj

B-9
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135 ?oRKATA)

OPEN (UNIT = 15,
9 NAME - PNAME,
9 STATUS a 'OLD',
9 ACCESS ft'SEQUENTIAL')

RRAD(15,136)DUM I DUMP MATRIXX OPENING
136 PORPW (A)

C --- NOW -D3TERMINE AMPLITUDE OP CARRIERS BASED UPON DESIRED SNR
C --- UNITY VARIANCE GAUSSIAI NOISE

WRITE(6,707)
707 FORMAT(2X,'ENTER DESIRED SNR ( dB) 'S

RZAD(6,708)SNR
708 FoRmAT(G)

AMP - SQRT(2. * 10.0 ** (SNR/10.)

73 FORMAT(G)

C--- MULTIPLY THE CARRIER POINTS BY THE DATA, ADD NOISE

DO 33 w 1.NBITS

DO KK - 1,NSMPBT
READ(14.73) CARBUF(KKI
READ(24,73) CARBUF2(KK)
READ(15,10) NEBUFP(Xl()

IF(PNBUF(JJ) .EQ. 1) THEN
RAWDUF(KK) - AKP*CARBU?(KK) + NZBUFF(KK)

ENDI?

J66LIF(PNBUP(33) .EQ. 0) THEN
RAWBUF(XK) - ANP*CARBUF2(KK) + KZDUFI(KK)

w~o ENDI?

WRITE(13,10) RAWBUF(KK)
END DO

END DO

155 FORMAT(2X,'3JJ ',I,5X,'KK: ',1,10X,'RAWBUF: ',G)

10 ?ORMAT(G)

C--- WRITE MATRIXX EOF

WRITE(13,56)
56 FORMAT(']')

CLOSE(13)
CLOSE(14)
CLOSE(15)
CLOSE( 24)
STOP
END
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C THIS PROGRAM GENERATES GAUSSIAN NOISE OF DESIRED VARIANCE
C THE ROUTINE USED TO GENERATE SAMPLES FROM A UNIFORMLY DIST-0C RIBUTED RANDOM PROCESS IS FROM WIDROW AND STEARNS.

PROGRAM ONOISE

REAL YBARBUF(SSOO)
REAL ACCUM(8800)
REAL_ R(6600)
RZAL- NEWAR
REAL- GAUSS(6600)
CHARACTER*32 FNAME

WRITE(6,50)
so FORMAT(2X,'ENTER NAME OF OUTPUT FILE: ,S

READ (6,51) FNAKE
51 FORMAT(A)

OPEN(UNIT - 3,

9 NAME - FNAKE,
9 STATUS - 'NEW',
9 ACCESS - 'SEQUENTIAL')

WRITE(3,S5)
55 FORMAT('Y-[')

WRITE(6,60)
60 FORMAT(2X,'ENTER DESIRED VARIANCE: 'S

READ(6,61) NEWVAR
61 FORMAT(G)

WRITE(6,52)
52 FORMAT(2X,'ENTER SEED FOR RANDOM NUMBER GENERATOR: '$

READ(6,53) K
53 FORMAT(I)

C --- ADD 50 RANDOM VECTORS SO ELEM4ENTS WILL BE APPROXIM4ATELY GAUSSIAN
Iv-C --- DISTRIBUTED RANDOM VARIABLES

DO JJ - 1,50

Do KK - 1,8800
R(KK) - RANDOM(K - .5

END DO

Do EK - 1,6800
ACCUMCRE) - ACCUM(KK) +e R(KK)

END DO

END DO

C --- NORMALIZE TO STANDARD NORMAL: MEAN IS NOW ZERO AND VARIANCE IS NOW 1/12

DO KX - 1,8800
YSARSUF(KX) - ACCURIKX)/50.

END DO

C --- NOW GET THE DESIRED VARIANCE

DO KK - 1,6800
GAUSS(KK) - SQRT(NEWVAR) *SQRT(50j)*YBARBUF(KK)/SQRT(l./12.)

END DO

C --- WRITE OUT GAUSSIAN VECTOR TO FILE

DO KK - 1,6600
WRITE(3,10)GAUSS(KK)

END DO

10 FORMAT(G) Bl



WRITE(3,59J
59 FORMAT(3')

CWOSE(3)

END

?UNC=ON RANDOM( I

1 -- 2045*1+1
I - 1 -(1/1048576) *1048576

RANDOM FWOAT(1.1)/1048577.0
RETURN
END
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C THIS PROGRAM CALCULATES THE ENVELOPE OF SIGNALS BY USING THEC HILBERT TRANSFORM TO FIND THE QUADRATURE COMPONENT. THEN THEC STANDARD FORMULA Or SQRT(I**2 + Q21 IS USED TO FIND THE ENVELOPE.

PROGRAM ENVELOPE

REAL BUFF(8192) I DATA READ FROM INPUT FILE
Ram RX(8192) I REAL BUIFFER FROM COMPLEX
REAL ENV(8192) I BUFFER TO HOLD REAL ANSWER
C014PTEX X(5192) I SUFFER OF COMPLEX INPUT DATACOMPL.EX POSHIL I CONSTANT EQUAL TO -jCOMPLEX NEGHIL I CONSTANT EQUAL TO +j
CHARACTER*32 FNAME I NAME OF INPUT FILE
CHARACTER*32 FNAME55 I NAME OF OUTPUT FILE
CHARACTER DUM I DUMMY

POSIIIL aCMPLX( 0., -1.)
NEGHIL -CPLX( 0., 1.4

C-- GET SIGNAL DATA

WRITE (6,1)
1 FORMAT(2X,'ENTER NAME OF INPUT FILE: '$

READ(6,2) FNAME
2 FORMAT(A)

OPEN (UNIT - 3,
9 NAME - FNAME,
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

C--- DUMP MATRIXX BEGINNING

READ(3 ,55)DUM
55 FORKAT(A)

C--- GO

DO KK - 1,8192
READ(3,10) BUFF(KK)
X(KK) - BUFF(KK)

END DO

10 FORMAT(G)

C --- CLOSE INPUT FILE

CLOSE(3)

C --- THIS PROGRAM SET UP FOR 4096 POINT DATA SEGMENT AND FFT

N - 8192
INV - 0 1 FORWARD FFT

CALL FFT(X,N,IKV)

C --- THIS IS THE HILBERT TRANSFORM4 PART

DO KR - 1,4096
X(KK) - X(RK~ * POSHIL

END DO

DO KK = 4097,8192
1(1K) - X(1K) * NEGHIL

END DO

C--- THAT'S THAT. NOW INVERSE TRANSFORM
INV - I I INVERSE FFT
CALL FFT(X,N,INV) B1



C--- USE INPIIASE AND QUADRATUNE CHILBEIT(X) To GET ENVELOPE

DO KI( a 1,8192
fX(KK) - X(KK)
ENV(KK) - SQRT(BUFF(KK)**2 + RX(KK)**2)

END DO

C--- OPEN OUTPUT FILE

WRlTr(6,1001)
1001 FORMAT(2X,'ENTER NAME OF OUTPUT FILE: '$

READ(6,1002) FNAME55
1002 FORMAT(A)

OPEN( UNIT a 11,
9 NAM4E - FNAME55,
9 STATUS - 'NEW',
9 ACCESS - 'SEQUENTIAL,)

C --- WRITE DATA TO OUTPUT FILE

C --- MATRIXX OPENING STUFF

WRITE(11,3)
3 FOR.MAT('Y - '

DO DCX - 1,6192
WRITE(11,34) ENV(KK)

END DO

34 FORMAT(G)

C--- MATRIXX STUFF

VRZTEf 11,35)

CI,35 FORMAT(')')

C--- CLOSE UP AND SHUT DOWN

CLOSE( 11)

STOP
END
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c THIS PROGRAM CALCULATES THlE KEAN AND VARIANCE OF FILES

PROGRAM STATS

REAL X(8800) I INPUT BUFFER
CHARACTER DUM I DUMMY
CRARACTER*32 PNAME I INPUT FILENAME
BYTE HAT

C--- OPEIPUT FILE

WRITE(6,101)
101 FORMAT(2X,'ENTER INPUT FILE: '$

READ(6,102) FNAME
102 FORMAT(A)

WRITE(6,201)
201 FORMAT(2X,'IS THIS A MATRIXC FILE [Y/NI: ',$)

READ(6,202) HAT
202 FORMAT(A1)

WRITE(6 ,103)
103 FORNAT(2x,'ENTER NUMBER OF DATA POINTS IN INPUT FILE: '$

READ( 6,104 )NPNT
104 FORMAT(I

OPEN(UNIT - 3,
9 SAME - FNAIIE,
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

C--- NIX NATRIXX BEGINNING To FILE IF NECESSARY

IF( MAT .EQ. 'Y') THEN
READ (3,1) DUN

ENDIF
1 FORMAT(A)

C--- DO THlE REAL READ

DO ilK a 1,NPNT
READ(3,3) X(KK)

END DO

3 FORMAT (G)

C --- CLOSE THE INPUT FILE

CLOSE (3)

C --- CALCULATE THE SAMPLE MEAN

SUM - 0.0

DO KN - 1,NPNT
SUN - SUN + X(KK)

END D0

SAMEAN - SUN/FLOAT INPNT)

C--- CALCULATE THE SAMPLE VARIANCE

SUN a 0.0

U DO KN - 1,NPNT
SUM a SUN + ( X(ICK) - SAMEAN)**2

END DOI

C--- NOW WRITE RESULTS TO OUTPUT FILE
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C 9 MKE 'STATS.DAT',
C 9 STATUS .= L,

C 9 ACCESS - 'SEQUENTIAL')

WRITE (6,5) SAKEAN, SAMVAR
5 FORK&T(2XOSANPLE HEAR: ',G,IOX,'SAKPLE VARIANCE: ',G)

C CLWSJ(4)

STOP-
END
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C "IS PROGRAM CALCULATES THE SPCRUM oF x POINTS
C THIS PROCESS IS RE1PEATED M TIMES, AND THE M SPECTRA* ARE AVERAGED.

PROGRAM SPECAVG

CRAACTER*32 FHAME I FILENAME
REAL RX(4096) IDUFFER OF REAL DATA POINTS
REAL. MAG(2048) I STORES MAGNITUDE SQUARtED OF FF? RESULT
COMPLEX X(4096) I COM4PLEX BUFFER FOR FFT SUBROUTINE
RZEL ACCUM(4096) I ACCUM4ULATOR TO AVERAGE SPECTRA

WRITE (6,1)
1 FORKAT(2X,'EXTER FILENAME OF INPUT DATA: 'S

READ (6 ,2 FNAME
2 FORMAT(A)

WRITE(6,33) FNA14E
33 rORMAT(2X,'FILENAKE OF INPUT DATA IS: ',A)

OPEN(UNIT - 12,
9 MAME - PNAME,
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

WRITE(6,219)
219 FORMAT(2X,'ENTER NAM4E OF OUTPUT FILE: 'S

READ(6,220)FNAME
220 rORMAT(A(

101 OPEN(UNIT - 13,
9 NAME - FNAME,
9 STATUS - 'NEW,
9 ACCESS - 'SEQUENTIAL')

C WRITE(6,3)
C 3 FORMAT(2X,'ENTER NUM4BER OF POINTS IN F??: 'S
C READ(6,4) NFFTPT
C 4 rORMAT(i)

NFFTPT - 4096

C WRITE(6,34)
C 34 FORMAT(2X,'ENTER NUMBER or SPECTRA TO CALCULATE AND AVERAGE: '$
C READ(6,35)ITERLIM
C 35 FORMAT(I)

ITERLIM w 2

C--- NIX MATRIXX STUFF

READ( 12,9 )DUIOIY
9 FORMAT(A)

C--- NOW GET ON WITH THE REAL READ

ITER - 0

22 ITER - ITER + 1

DO KK - 1,NFFTPT
RZAD(12,10,ERR - 39)RX(KK)
X(KK) - RX(KK)

END DO
10 FORMAT(G)

39 CONTINUE

C--- CALL THlE FFT SUBROUTINE



INV - 0 1 IMPLIES FORWARD TRANSFORM
N - NFPTPT
CALL FFT(X,N,INV)

C--- NOW FIND THE MAGNITUDE SQUARED

DO KK - I,NFFTPT/2
MhG(KK) - CABS( X(KK))0*2

END -DO

C--- DEBUG STUFF

DO KK . 1,10
WRITE(6,335)KK,MAG(KK)

END DO
335 FORMAT(2X,'mAG(',I2,' ) ' ,G)

C--- NOW ACCUMULATE THE SPECTRA

DO KK - 1,NFFTPT/2
ACCUM(KK - ACCUM(KK) + MAG(KK)

END DO

IF (ITER .NE. ITERLIM)GOTO 22
C--- IF YOU GET HERE, YOU ARE FINISHED WITH THE INPUT FILE

CLOSE(12)

C--- NOW WRITE THIS OUT TO A FILE

C--- MATR-XX FILE FORMAT STUFF

WRITE(13,108)
108 FORMAT('y p [,)

DO KK - 1,NFFTPT/2ACCUM(KK) - ACCUM(KK)/FLOAT(ITERLIM)

WRITE(13,21)ACCUM(KK)
END DO

21 FORMAT(G)

C--- MORE MATRIXX FORMAT

WRITE(13,109)
109 FORMAT(']')

CLOSE (13)

STOP
END
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C TIS FFT SUBROUTINE COMES FROM THE BOOK DISCRETE TIME SIGNALS
C AND SYSTEME5 BY AHMED AND NATARAJAN, APPENDIX 4.1
C

C
C CALLING SEQUENCE
C CALL FFT(X,N,INV)
C
C ARGUWNTS REQUIRED FROM THE CALLING ROUTINE
C
C X - COMPLEX VECTOR TO BE TRANSFORMED
C N - NUMBER OF POINTS TO BE TRANSFORMED
C (MUST BE A POWER OF 2)
C siNV- INV 0 0= FORWARD TRANSFORM
C INV 1 in>INVERSE TRANSFORM
C
C ARGUMENTS SUPPLIED TO THE CALLING ROUTINE
C
C X - COMPLEX TRANSFORMED VECTORC NOTE THAT THE TRANSFORMED VECTOR IS RETURNEDC IN THlE ORIGINAL TIME ARRAY oF POINTS

SUBROUTINE rFT(X,N,INV)
COMPLEX X(1),W,T
ITER a 0
IREM ftN

*10 IREM - IREM/2
IF (IREN .EQ. 0) GOTO 20
ITER aITER+ 1
GOTO 10

20 CONTINUE
S . -1
IF (INV -EQ. 1) S - 1
NXP2 a N
DO 50 IT - 1,ITER
NXP - NXP2
NXP2 -NXP/2

AG-FLOAT(M-1)*WPWR
W - CMPLX(COS(ARG),S*SIN(ARG))
DO 40 MXP 0, NXP,N,NgXp
J1 - lCp-tNxp+l
32 - 31 + NXP2
T - X(Jl)-X(J2)
X(31) - X(i)+X(J2)

40 X(32) - TOW
50 CONTINUE

N2-N/2
Ni-N-i
Jul
DO 65 I-1,N1
IF(I .GE. J) GOTO 55
TmX (J)
X(3) w X(I)
X(I) - T

55 KmN2
60 IF(K .GE. J) GOTO 65

3.3-K
KmK/2
GOTO 60

65 JmJ*K
IF (INV -EQ. 1) GOTO 75
DO 70 I-1,N

70 1(1) - X(I)/FLOAT(N)
75 CONTINUE

RETURN
END
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C THIS PROGRAM WILL DO SPECTRAL CORRELATION OF DATA SPECTRA WITH
C A S!NC SQUARED FUNCITON. THE INPUT SPECTRA ARE TREATED AS WAVEFORMS
C 0RE PENORGYO AHAEEDMLZDT UIYBFR HECREAIN

STARE PEREGDFEC R OMLZDT NT EOETECREAIN

REAL BUFFO(4096), DUFF114096), BUFr2(8192)
REAL_ BUFF3(4096),MIS

RL&17 SYMRAT
REAL- MAX VAL
INTEGER PEAXLC
CHARACTER*32 FNAME
BYTE DUN

C--- INPUT ACTUAL SYMBOL RATE OF DATA

C WRITE(6,3000)
C 3000 FORMAT(2X,'ENTER BASEBAND SYMBOL RATE IN HZ: '$
C READ(6,3001IsYmRAT
C 3001 FORMAT(G)

SYNRAT - 500.

C--- SOME USEFUL NUMBERS... .INCLUDE rFT SIZE

C WRITE(6,4000)
C 4000 FOPMAT(2X,IENTER BIN SIZE OF FIT: '$
C READ(6,4001)DELFRQ
C 4001 FORMAT(G)

DELFRQ - 244.140625

P12 - 2.0 * 3.1415926

C --- NOW GENERATE THE BASEBAID SINC SQUARED
C --- NOTE THAT THE Dc COMPONENT oF THIS SINC SQUARED
C --- I S AT BUFFER LOCATION 1024

DELTAT - 1./SYMRAT

Do ii3 - 1,2048
TMP - P12*DELTAT*DELFRQ*(FLOATJ(jj) -1023.999)
DUFFO(J) - (SIN(TMP)/TMP)**2

END DO

C-- CALCULATE THE ENERGY IN THE BASEBAND SINC SQUARED

ESUM =0.0

DO 33 1,2048
ESUM - DUFFO(JJ)**2 + ESUM

ENDDO

C--- NOW NORMAIZE SUCH THAT ENERGY OF WAVEFORM IS ONE

DO J3 a 1,2048
BUFFO(J) - BUFFO(JJ)/SQRT(ESUM)

ENDDO

C--- READ IN THE DATA FILE

WRITE(6, 181)
181 FORMAT(2X,'ENTER INPUT FILE: ',$)

RZAD(6,1831 FKAME
183 FORMAT(A)

.4 OPEN(UUIT a 11,
9 NAME - FNAME,
9 STATUS n 'OLD',

9 ACCESS - 'SEQUENTIAL')

C--- G9T OUTPUT FILE NAME
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21 WRITE(6,281)

21FORKAT(2X,'ENTEPR OUTPUT FILENAMZE:,$
EEAD(6,183)FNAIE

C--- NIX MATRIXX STUFF

RZADI 11 *173 )DUN
173 FORMAT(A)

DOKC-1,2046
READ (11, 177) BUFF1( RH

END DO
177 FORMAT(G)

CLOSE( 11)
C --- NIX THE DC RESPONSE BEFORE THE CORRELATIONS

BUFF1(1) . 0.

C --- CALCULATE THE ENERGY IN THE SPECTRA WAVEFORM

ESUM -0.

DO XX 1,2048
ESUM - BUFF1(KK)0*2 + ESUM

END DO

C --- NOW NORMALIZE

DO KK - 1,2048
BuFF1(KK) - BUFF1(KK)/SQRT(ESUM)

END DO

C --- TAKE CARE OF OFFSET OF BASEBAND SINC BEFORE CORRELATION
C --- THIS IS ACCOMPLISHED BY PUSHING THE SPECTRUM OF THE DANDPASS
C --- SIGNAL OUT 1023 POINTS

DO N - 1,3072
NOFFSET - N - 1023

IF( NOFFSET .LT. 1) THEN
BUFF3(N) a 0.0

ELSE
BUFF3(N) - BUFF1(N-1023)

ENDIF

END DO

C--- HERE COMES THE CORRELATION

DO N - 1,2048

DO KK 1,2048
SUM - 3UFF0(KK)*BUFF3(KK+N-1)
TEMP - TEM4P + SUM

END DO

BUFF2(N) w TEMPI

C--- noV WRITE OUT THE OUTPUT FILE

OPSN(UNIT - 3,

FILE - FNAME,I
9 ACCESS - 'SEQUENTIAL)

C--- PATRIEx FILE FORMAT

WRITZ(3,498)
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498 FORMATC'Y I'

DO KK - 1,2048
WRXTE(3,501)BUFF2(KK)

9"DDo
501 FORMAT(G)

C--- MATRIXX FILE FORMAT

WhITZ(3,499)
499 OMAT (') 

C--- CLOSE OUTPUTr FILE

CLOSE(3)

C-- NOW FOR My INFORMATION, GIVE PEAK CORRELATION VALUE AND LOCATION

DO KK a 1,2048
IF(SUrF2(KK) .GT. MAIVAL) THEN

MAXVAL - BUFF2(KK)
PEAKLC - KI(

END!?
ENDDO
WRITE(6,555)MAXVAL,PEAKLC

555 FORMAT(2X,'MAX CORR VAL IS: ',Fl5.10,10X,'PEA( LOC: '1

STOP
END
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C THIS PROGRAM DESIGNED To BE USED WITH SPECOR PILES ONLY
C AND FINDS THE TWO LARGEST NUMBERS IN THE CORRELATION AND

C SAVES THEIR LOCATIONS

PROGRAM BIOVALS

CHARACTER*32 FNAME ,DUM
BYTE MATFLG
REAZ- UMAX
REAL SMAX
INTEGER UMAXLoc
INTEGER UMAILOC
INTEGER TWIDDLE
REAL 3UFF(2048)

C--- GET ON WITH IT

WRITE(6,15)
15 FORMAT(2X,'ENTER FILENAME: 'S

READ(6,16) FNAME
16 FORMAT(A)

OPEN(UNIT - 3,
9 NAKE - FNAME,
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL,)

WRITE(6,25)
25 FORMAT(2X,'IS THIS A MATRIXX TYPE FILE [Y/N]: '$

READ(6,26) MATFLG
26 FORMAT(A)

IF (MATFLG .EQ. 'Y') READ(3,26)DUM

DO KIC - 1,2046
READ( 3,20)BUFF(KX)

END DO

C--- GET RID oF LARGE DC RESPONSE BY NIXING LOW FREQUENCY VALUES

UMAX - -500000.
BMAX - -500000.

DO KK - 1,2048
IF(BUFF(KK) .GT. UMAX) THEN

UMAX - DUFF(ICK)
ILOC - KK

ENDIF
END DO

C--- ZERO OUT POINTS NEAR THE BIGGEST POINT

IF(ILOC .LT. 6) STOP' MAILOC IS REALLY SMALL'

DO KK - ILOC-6,ILOC+S
BUfF(KK) = 0.0

END DO

UMAXI - -5000.
DO KK - 1,2046

IF(BUFF(RK) .GT. UMAX1I THEY
UmAI a SUFF(RR)
ILOC1 - KK

ENDIF
END DO

101 FORMAT(2X,'NUMBER OF POINTS IN FILE IS: ',I)

20 FORMA1G

B-23

1 %%AAA



CW4SZ(3)

lm!?E(6,5O )UMAX, ILOC
WRITZ(6,51 )UMAX1 ,ILocl

50 PORMAT(2X,'BIGGEST IS: ',G,1OX,IAT LOCATION: ',I)

51 PORRAT(2x,.SZCOND BIGGEST IS: *,G,IOX,'AT LOCATION: ,I1)

sfo#
RND-
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C THIS PROGRAM DESIGNED TO BE USED WITH SPECOR FILES ONLY
C AND IT SEARCHES FOR PEAKS IN VICINTIY OF 600 TO 1000 FFT BINS

PROGRM SVAL

CHARACTER*32 rNAME ,DUN
BYTE MATFLG
REAL UMAX
REA~ll- amA"
INTEGER UNAXLOC
INTEGER BMAXLOC
INTEGER TWIDDLE
REAL BUFF(2048)

C--- GET ON WITH IT

1001 WRITE(6,15)
1s FORKAT(2X,'ENTER FILENAME: '$

READ(6,16,END - 9999) FNAME
16 FORMAT(A)

OPEN(UNIT - 3,
9 NAME - FNAME,
9 STATUS - 'OLD',
9 ACCESS a 'SEQUENTIAL')

WRITE(6,25)
25 FORMAT(2X,'IS THIS A MATRIXX TYPE FILE 1Y/NJ: '$

READ(6,26) mATFLG
26 FORMAT(A)

IF (MATFIA .EQ. 'Y') READ(3,26)DUM

DO KK - 1,2048
P.ELD(3 ,20jU?JrR)

END DO

UMAX - -500000.
BMAX - -500000.

C--- CHECK POINTS ONLY NEAR WHERE EXPECTED

DO KK - 600,1000
IF(BUFF(KK) .GT. UMAX) THEN

UMAX - BUFF(KK)
ILOC - KK

ENDIF
END DO

C--- EERO OUT POINTS NEAR THE BIGGEST PO INT

DO KK - ILOC-.g,ILOC+$
BUFF(KK) = 0.0

END DO

UMAX1 - -5000.I

IFIBUFF(KK) .GT. UMAXI) THEN
UMAXI - BUFF(KK)

ILOC1 a KK
ERDIF

END DO

101 FORMAT(2X,'NUMDER OF POINTS IN FILE IS: ',I)
20 FO3MAT(G)

CLOUEM3
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WRITE(f6.50 )UMAX, ILO)C
WRITE(6, 51 )RAx1,i~oci

so FORMAT (2X, 'BIGGEST IS: ',G,1OX,'AT LOCATION: 't1)51 FORMAT (2X, 'SECOND BIGGEST IS: '.G,10X,tAT LOCATION: ',I)

GOTO 1001

9999 8T02.
END -
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C TIS PROGRAM DEISIG1NEID TO BE USED WITH SPECOR FILE S ONLY

PROGRAM QVAL

CIIARACTER*32 FNAmE ,DUM
BYTE MATFLG
UIAL UMAX

REAL SMAX
INTEGER UMAXLOC
INTEGER BMAXLOC
INTEGER TWIDDLE
REAL BUFF(2048)

C--- GET ON WITH IT

1001 WRITE(6,15)
15 FORMATM2,'ENTER FILENAME: '$

READ(6,16,END - 9999) FRAME
16 FORMAT(A)

OPEN(UNIT - 3,
9 NAME - rNAME,
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

WRITE(6,25)
25 FORMAT(2X,'IS THIS A MATRIXX TYPE FILE [Y/NJ: 'S

READ(6,26) MATFLG
26 FORMAT(A)

IF (MATFLG .EQ. 'Y') READ(3,26)DUM

DO KK - 1,2048
READ(3,20)BVFF(KK)

END DO

UJMAX - -500000.
BMAX - -500000.

C--- CHECK PO INT S ONLY NEAR WHERE EXPECTED

DO KM - 1400,1800
IF(BUFF(KK) .GT. UMAX) THEN

UMAX - BSWF(KK)
ILOC - KM

ENDIF
END DO

C--- ZERO OUT POINTS NEAR THE BIGGEST POINT

Do KK - ILOC-8,ILOC+S
BUFF(KK) w 0.0

END DO

UMA~l - -5000.
Do KM - 1,2048

IF(BUFF(KK) .GT. UMAXi) THEN
UMAXI - BUFF(KK)
ILOC1 - KK

EmDIF
END DO

101 FOPMA?(2X,'NUMBER OF POINTS IN FILE IS: ',I)
20 FORMAT(G)

CLOSE(3)

WR ITE (6, 50) UMAX, ILOC
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WRITZ(6 ,51 )UMAX1 ,ILocj

50 OT2, IG S1 S: G, XTLATO:'I
51 ORMAT(2X,'SECOND BIGGEST IS: ',G,10X,'AT LOCATION: ,I1)

0070 1001

9999 STOP
END

B-28



C THIS PROGRAM IMPLEMENTS A MODIFIED LMS ALGORITHM BASED UPON A COM-

C BINATION OF IDEAS FROM TOU AND GONZALEZ, LIPPMANN. AND TREICHLER

C AND OTHERS

C DATE 3 NOVEMBER 1987

PROGRAM THELMS

REAL X1(10), X2(10), X3(10), x4(10) I FEATURE VECTORS
REAL W1(10), W2(10), W3(10), W4(10) I WEIGHT VECTORS
REAL WS((10)
REAL D1,D2,D3,D4,D5 I DESIRED OUTPUT VALUES

REAL E1,E2,E3,E4,ES I DESIRED MINUS ACTUAL
REAL Y1,Y2,Y3,Y4,YS I ACTUAL OUTPUT VALUES
REAL MU I GAIN PARAMETER; "TWIDDLE FACTOR"
BYTE AGNFLG
BYTE SKIP

C--- GIVE FEATURE VECTORS VALUES

WRITE(6,800)
800 FORMAT(2X,'ENTER NUMBER OF ELEMENTS IN FEATURE VECTORS: ',$)

READ(6,801)NEL
801 FORMAT(I)

73 OPEN (UNIT - 3,
9 NAME - 'OOK.FT',
9 STATUS - 'OLD',

9 ACCESS = 'SEQUENTIAL')

DO KR - I,NEL
READ(3,810)XI(KK)

END DO

CLOSE (3)

OPEN (UNIT a 3,
9 NAME - 'BPSK.FT',
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

DO KK - 1,NEL
READ( 3,810 )X2(KK)

END DO

CLOSE(3)

OPEN (UNIT - 3,
9 NAME - 'QPSK.FT',
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

DO KK - I,NEL

READ(3,810)X3 (KK)
END DO

CLOSE(3)

OPEN (UNIT - 3,
9 NAME - 'FSK.FT',

9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

DO KK - I,NEL
READ(3,810 )X4 (KX)

END DO

~~CLOS ( 3 )

810 FORMAT(G)

C--- INITIALIZE WEIGHT VECTORS TO ZERO B1
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74 DO KK - 1,NEL'. l I(KK) - 0. 0
W2(KK) a 0.0

W3(KK) a 0.0
W4(KK) - 0.0

SOD DO

C--- INIUALIZE GAIN CONSTANT

WRITE (6, 1)
1 FORMAT(2X,'ENTER GAIN CONSTANT: ',$)

READ ( 6, 2) MU
2 FORMAT(G)

C--- ENTER NUMBER OF DESIRED ITERATIONS

WfITE(6,93)
93 FORMAT(2X,'ENTER NUMBER OF ITERATIONS: ',S)

READ( 6 , 94) ITERLIM
94 FORMAT(I)

C--- BEGIN ITERATIONS

ITER - 0

C--- GET ITERATIONS REALTED TO INDEX OF CLASSES

10 ITER - ITER + 1

IVAL - IIFIX(AMOD(FLOAT(ITER),4. ))
IF (IVAL .EQ. 0) IVAL - 4

C--- GET DESIRED OUTPUT VALUES FOR EACH ITERATION

IF (IVAL .EQ. 1) THEN
Dl - 1.
D2 - 0.
D3 0 0o
D4 0.

ENDIF

IF (IVAL .EQ. 2) THEN
D1 . 0.
D2 - 1.
D3 - 0.
D4 - 0.

ENDIF

IF (IVAL .EQ. 3) THEN
Dl - 0.
D2 - 0.
D3 - 1.
D4 - 0.

ENDI?

IF (IVAL .EQ. 4) THEN
DI - 0.
D2 - 0.
D3 - 0.
D4 - 1.

ENDi?

C--- CALCULATE ACTUAL OUTPUT VALUES FOR EACH SET OF WEIGHTS

YI - 0.
T2 - 0.
Y3 a 0.
T4 a 0.

IF (IVAL .EQ. 1) THEN
DO KS - INlL
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Ti - W1(Ku) * X1((2) + 1(1
Y(2 - W2(K22 Xi(KK) + Y(2
Y(3 - 113(KK) * X1((2) + Y(3
Y(4 a 114(22) * X1((2) + Y(4

ENDDO
RWD!?

IF (IVAL .EQ. 2) THEN
00 R2 a 1,NEL

Ti 111(1() * X2(K22) + 1(1
Y2 ftW2(K2) * 1(2(22) + 1(2
Y(3 a W3(K2) * 1(2(22) + Y(3
Y(4 - 114(22) * X2(KK) + Y(4

END!?

IF MIAL .EQ. 3) THEN
DO 22 ft 1NEL

1(1 a 111(K) * X3(2I() + 1(1
Y(2 - W2(22) *X3(KK) + Y(2
Y(3 - W3(K2) *1(3(22) + Y(3
Y(4 - 114(22) *1(3(KK) + Y(4

ENDDO
ENDI?

IF MIAL -EQ. 4) THEN
DO 22 - i.NEL

1(1 - Wi(KK) * X4(22) + 1(1
Y(2 - 112(KK) *1(4(22) + 1(2
Y(3 a W3(KK) *1(4(22) + Y(3
Y(4 - 114(22) *X4(KK) + Y(4

ENDDO
ENDI?

C--- CALCULATE ERRORSCEl -1 DI - 1(1

Z2 - D2 - Y(2
23 - D3 - Y(3
24 - D4 - Y(4

C--- Now DO THE UPDATES 0? THE WEIGHT VECTORS

IFlIVAL *EQ. 1) THEN
DO 22 - l,NEL

111(22) - 111(22) + MU * El * 1l((2)
112(22) - 112(2) +- KU *22 * X((2)
113(KK) - 13(22) +- MU *23 * XX(K2)
114(22) - 114(KK) + MU * 24 * 1l((2)

ENDDO

IF(IVAL .EQ. 2) THEN
DO 22 - 1,NEL

111(22) - 111(22) + KU E l *X2(22)
112(2K) w 112(22) + 1MU * 22 * 1(2(22)
113(22) - 113(22) + MU * 23 * X2(K2)
114(22) - 114(22) + MfU 2 4 * 1(2(22)

ENDDO
ENDI?

IF(IVAL .2Q. 3) THEN
DO 22 - l,NEL

111(22) - 111(2) + MU *El * X3(22)
112(22) w 112(22) + MU * 22 * X3(22)
113(22) - 113(2) +- MU * 23 *1(3(22)
114(2K) - 114(22) +- MU * 24 * X3(22)

ZF(lVAL .EQ. 4) THEN

go DO 22 - l,NEL
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Wl(KC) - Wl(KKc) + MU * El * X4fKK)
W2(KK) - W2(KK) + MU * 22 - X4(KC)

ENDIF ) - W3(KK) + MU * 3* X4(KK)

V3(Kx) - W3(Iuc) + MU * 23 * X4(KK)

C --- CHECK TO SEE IF YOU'RE DONE

1F 1-ITER .EQ. ITERLIM) GOTO 999

GOTO 10

C --- YOU'RE DONE. WRITE OUT FINAL WEIGHTS

999 WRITE(6,100)XTER
TYPE ','

DO KIC - 1,NEL
WRITE(6,191) Wl(KK), W2(KK), W3(KK),W4(KK)

END DO

191 FORMAT( 4(2X,G,3X))

TYPE *,'

100 FORMAT(2X, 'ITERATION: ',17)
102 FORMAT ( 5(2X,F14.7,5X))

C--- AGAIN?

WRITE(6,133)
133 FORKAT(2X, 'AGAIN? (Y/Nj: 'S

READ(6,144 )AGNFLG
144 FORMAT(Al)

IT (AGNFLG -EQ. 'N') GOTO 1001

GOTO 73

1001 OPEN(UNIT - 23,
9 NAKE - 'WEIGHTS.LMS',
9 STATUS a 'NEW',
9 ACCESS - 'SEQUENTIAL,)

DO KI( - 1,NEL
WRITE(23,191)W1(KK),W2(KK), W3(KK), W4(KK)

END DO

WRITEC 23, 761 )ITERLIM,MU
761 FORMAT(I,l0X,G)

CLOSE) 23)

STOP
END
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C --- THIS PROGRAM USESVTHE OUTPUT OF THE LKS ALGORITHM TO
C --- CLASSIFY FEATURE VECTORS

PROGRAM THECLASS

REAL x1(9)
REAL W1(9), W2(9), W3(9),W4(9),W5(9)
REAL SUMI5)
REAL- MAXVAL
D3FT6 AGN
CHARACTER *32 NM

C--- GET WEIGHT VECTORS FROM FILES

20 WRITE(6,734)
734 FORMAT(2X,'ENTSR NUMBER OF' ELEMENTS IN FEATURE VECTORS: '$

READ(6 ,735)NEL
735 FORMAT(I

WRITE(6,750)
750 FORMAT(2X,'ENTER NAME OF FILE OF WEIGHTS: '$

READ(6,751) FNAME
751 FORMAT(A)

OPEN(UNIT -3,
9 NAME - FNAME,
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

DO KK - 1,NEL
READ(3,1)Wl(KK),W2(KK).W3(KK),W4(KK)

END DO

CLOSE (3)

1 FORMAT( 4(2X,G,3X))

DO KK - 1,NEL
WRITE(6,1(W1(KK), W2(KK), W3(KK), W4(KK)

END DO

C--- INPUT UNKNOWN DATA VECTOR

5595 wRTE(6,S81)
S81 FORMAT(2X,'ENTER FILENAME OF UNKNOWN FEATURE VECTOR: 'S

READ(6,882) FNAME
882 FORMAT (A)

OPEN(UNIT- 3,
9 NAME - FNAME,
9 STATUS - 'OLD',
9 ACCESS - 'SEQUENTIAL')

DO KK - 1,NEL
READ (3,2 )Xl (KK)

END DO

2 FORMAT(G)

DO KK w I,NEL
WRITE(6,2)Xl(KK)

END DO

DO KK w 1,4
SUM(KK) - 0.0

EDDO

DO KK - 1,NEL
SUM(1) - W1(KK) *X1(KK) + SUM(1
UUMM2 w W2(KK) * X1(KK) + SUM(2
SUM(3 w V3(KK) * XI(KK) + SUMM3

4*' ~SUMM4 - V4(KK) * Xl(KK) + SUM(4) B3
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END DO

C--- FIND LARGEST ELEMENT IN SUN VECTOR

NAxvAL. -l-10000.

DO EN 1,4
IF(SUM(KK) .GT. HAXVAL) THEN

- AXVAL - SUNCEK)
-- IND -KK

EWfDIF
ENDO

C--- WRITE RESULTS

WRITE(6,5)IND,SUM(IND)
5 FORKAT(2X,'UNKNOWN BELONGS TO CLASS 1,11,10X, 'SUM IS: ',G)

TYPE
TYPE

14RITE(6, 1999 )SUM1) , SUM (2),SUM (3) SUM (4)

1999 FORMATI! 4(2X,G,3X))

C--- DO YOU WANT TO INPUT ANOTHER UNKNOWN VECTOR?

WRITE (6,50)
50 FORMAT(2X,'AGAIN? (YIN]: 'S

READ( 6,51 )AGN
51 FORMAT(Al)

IF(AGN .EQ. 'N') THEN
GOTO 99

ELSE
GOTO 5595

ENDI?

9 9 WRITE(6,1998)
1998 roRmAT(2X,'SUM1',15X,'SUM2',15X,'SUM3',15X,'SUM4')

TYPE*

STOP
END
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